韩 伟,王绍宗,张 倩,田宇航
(机械科学研究总院 先进成形技术与装备国家重点实验室,北京 100044)
DOI:10.13732/j.issn.1008-5548.2021.06.007
收稿日期: 2021-06-24,修回日期:2021-09-13,在线出版时间:2021-10-26 14:35。
基金项目:国家重点研发计划项目,编号:2016YFC0700905-04。
第一作者简介:韩伟(1994—),男,汉族,硕士研究生,研究方向为先进制造技术及装备。E-mail: 122352877@qq.com。
通信作者简介:王绍宗(1981—),男,汉族,博士,研究员,硕士生导师,研究方向为数字化制造。E-mail: wszbit@163.com。
摘要:为了验证离散元方法标定微米级颗粒离散元仿真参数的可行性,选取一种粒径分布在10~400μm的粉体活性染料作为微米级颗粒物质的代表开展参数标定实验。采集粉体活性染料堆积角实验中的料堆图像进行数字图像处理,计算堆积角并以此作为响应值、选择JKR接触模型进行Plackett-Burman实验,寻找影响粉体活性染料流动特性的3个最显著因素;通过2次最陡爬坡实验,确定各因素最优值所在的区间;根据Box-Behnken实验建立并优化堆积角与显著性参数的二阶回归模型,求解显著性参数的最佳组合;开展验证实验,将其结果与物理实验实测值进行对比。结果表明:相对误差为1.19%,表明此参数标定实验是可行的,获取的参数可用于离散元仿真。
关键词:微米级颗粒;粉体活性染料;参数标定;离散元模拟;堆积角;二阶回归模型
Abstract:In order to verify the feasibility of the discrete element method to calibrate the discrete element simulation parameters of micron sized particles,a powder reactive dye with particle size distribution of 10 ~ 400 μm in the printing and dyeing industry was selected as the representative to carry out the parameter calibration test. Performing digital image processing on the pile image in the test of measuring the accumulation angle of the dye,calculateing its accumulation angle and use this as the response value,selecting“Hertz-Mindlin with JKR”as a contact model,the Plackett-Burman test was performed to find the three most significant factors affecting the flow characteristics of the dye. Two steepest ascent tests were carried out to determine the optimal value range of each factor. Then,according to box Behnken test,the second-order regression model of accumulation angle and saliency parameters was established and optimized,and the best combination of saliency parameters was calculated. Finally,the simulation parameters were used to carry out the verification test,and the results were compared with the measured values of physical experiments. The reults show that relative error of the verification test is 1. 19%,which proves that the parameter calibration test is feasible.
Keywords:micron sized particles; powder reactive dyes; parameter calibration; discrete element simulation; accumulation angle; second-order regression mode
参考文献(References):
[1]刘晓辉, 吴爱祥, 欧阳振华, 等. 浓密尾矿管道输送的研究现状及展望[J]. 安全与环境学报, 2020,20(1): 283-289.
[2]ALKASSAR Y, AGARWAL V K, PANDEY R K, et al. Analysis of dense phase pneumatic conveying of fly ash using CFD including particle size distribution[J]. Particulate Science and Technology, 2021,39(3): 322-337.
[3]孟凡凯,尹少武,张沛,等. 高速气流冲击下微细颗粒的输送特性[J]. 过程工程学报,2017, 17(2): 231-236.
[4]LIN W, WANG K, YANG Y, et al. Characterization of flow pattern of cohesive particles in gas-solid fluidized bed via axial distribution of particle motions[J]. International Journal of Multiphase Flow, 2020,130: 103355.
[5]ANAND A, CURTIS J S, WASSGREN C R, et al. Experimental study of wet cohesive particles discharging from a rectangularhopper[J]. Industrial & Engineering Chemistry Research,2015, 54(16): 4545-4551.
[6]张锐,韩佃雷,吉巧丽,等. 离散元模拟中沙土参数标定方法研究[J]. 农业机械学报,2017, 48(3): 49-56.
[7]刘凡一,张舰,李博,等. 基于堆积试验的小麦离散元参数分析及标定[J]. 农业工程学报,2016, 32(12): 247-252.
[8]罗帅,袁巧霞,GOUDASB,等. 基于JKR粘结模型的蚯蚓粪基质离散元法参数标定[J]. 农业机械学报,2018, 49(4): 343-350.
[9]李永祥,李飞翔,徐雪萌,等. 基于颗粒缩放的小麦粉离散元参数标定[J]. 农业工程学报,2019, 35(16): 320-327.
[10]FENG Y T, OWEN D R J. Discrete element modelling of large scale particle systems—I: exact scaling laws[J]. Computational Particle Mechanics,2014, 1(2): 159-168.
[11]GRIM A P, WYPYCH P W. Development and validation of calibration methods for discrete element modelling[J]. Granular Matter,2011, 13(2): 127-132.
[12]LI Y, XU Y, THORNTON C. A comparison of discrete element simulations and experiments for ‘sandpiles’ composed of spherical particles[J]. Powder Technology,2005, 160(3): 219-228.
[13]ALIZADEH M, ASACHI M, GHADIRI M, et al. A methodology for calibration of DEM input parameters in simulation of segregation of powder mixtures, a special focus on adhesion[J]. Powder Technology,2018, 339: 789-800.
[14]GILABERT F A, ROUX J N, CASTELLANOS A. Computer simulation of model cohesive powders: Influence of assembling procedure and contact laws on low consolidation states[J]. Physical review: E,2007, 75(1): 11303.
[15]夏蕊,杨兆建,李博,等. 基于离散元法的煤散料堆积角试验研究[J]. 中国粉体技术,2018, 24(6): 36-42.