祝 颖1a,b,罗静期1a,b,刘焕武2,沈振兴3,李业鑫4,刘言正5,周 勇1a,b
1. 西安建筑科技大学 a. 环境与市政工程学院; b. 陕西省环境工程重点实验室,陕西 西安 710055;
2. 西安市环境监测站, 陕西 西安 710061;
3. 西安交通大学 能源与动力工程学院,陕西 西安 710049;
4. 安康市环境工程设计有限公司,陕西 安康 725000;
5. 西安建筑科技大学 南澳大学安德学院,陕西 西安 710311
DOI:10.13732/j.issn.1008-5548.2021.06.005
收稿日期: 2021-04-11,修回日期:2021-07-09,在线出版时间:2021-10-18 14:25。
基金项目:国家重点研发计划项目,编号:2016YFC0207800;国家自然科学基金,编号:51608422;陕西省大学生创新创业训练计划项目,编号:S201910703084;陕西省一流专业建设项目,编号:YLZY0303C02。
第一作者简介:祝颖(1984—),女(蒙古族),博士,副教授,硕士生导师,研究方向为大气污染控制。E-mail:zhuyingxauat@163.com。
摘要:为研究2019新型冠状病毒疫情期间细颗粒物(PM2.5)化学组分及来源,于2020年1月1日—2020年3月31日,利用在线监测仪器对西安市北郊PM2.5化学组分进行连续观测。结果表明:NO3-、SO42-、NH4+是水溶性离子中最主要的成分,且水溶性离子呈中性偏碱性;相比新冠疫情管控前(PC),新冠疫情严管期(DC)的PM2.5、CO、SO2、NOX、元素碳、NO3-及SO42-的质量浓度降幅分别为10.56%、21.89%、13.40%、65.98%、9.54%、29.69%和10.04%,且NO3-与SO42-质量浓度比值降幅为29.41%;通过有机碳与元素碳质量浓度比值分析,含碳组分物质主要来自于燃煤和机动车尾气源;二次有机碳是逐渐复工期(GW)、全面复工期(AW)有机碳的主要来源,一次有机碳是PC、DC阶段有机碳的主要来源;通过正定矩阵因子分解法源解析结果表明,PC、DC、GW阶段首要污染源为燃煤源(64.00%),AW阶段建筑及扬尘贡献值最大(61.34%),原因是管控措施DC阶段机动车源减少3.20%,工业工艺源减少1.82%。
关键词:新冠疫情;细颗粒物;水溶性离子;碳组分;源解析
Abstract:In order to study the chemical characteristics of PM2.5 during the COVID-19 pandemic,this study used online observation instruments to continuously observe chemical components of PM2.5 in the northern urban area of Xi'an from 01 January to 31 March,2020. The results show that NO3-,SO42-,NH4+are the most important components of water-soluble ions,and the watersoluble ions are neutrality skew alkaline. Compared with pre-COVID-Lockdown stage(PC),the mass concentrationsof PM2.5,CO,SO2,NOX,elemental carbon,NO3-,SO42-are reduced by 10. 56%,21. 89%,13. 40%,65. 98%,9. 54%,29. 69%and 10. 04% respectively in COVID-Lockdown stage(DC),and the mass concentration ratio of NO3-and SO42-is reduced by 29. 41%. The mass concentration ratio of organic carbon to elemental carbon reveals that the carbon component in the measurement period mainly come from coal and vehicle exhaust sources. The estimation of the secondary organic carbon found that the secondary organic carbon is the main source of gradual resumption of work(GW) and almost complete resumption of work(AW) stages,and primary organic carbon is the main source of PC and DC stages. Positive matrix factorization source analysis results show that coal combustion(accounting for 64. 00%) is the main source of organic carbon in PC,DC and GW stages,and the contribution value of construction and dust in AW stage is the largest(61. 34%). Due to the control measures,the motor vehicle source in DC stage decreases by 3. 20%,and the industrial process source decreases by 1. 82%.
Keywords:COVD-19 pandemic; PM2.5; water-soluble ions; carbonaceous; source
参考文献(References):
[1]XIAO H, WU Q, YANG X, et al. Numerical study of the effects of initial conditions and emissions on PM2.5 concentration simulations with CAMxV6.1: a Xi’an case study[J]. Geoscientific Model Development, 2021, 14(1): 223-238.
[2]DU G, LIU S, LEI N, et al. A test of environmental Kuznets curve for haze pollution in China: evidence from the penal data of 27 capital cities[J]. Journal of Cleaner Production, 2018, 205: 821-827.
[3]CHEN Z, CHEN D, ZHAO C F, et al. Influence of meteorological conditions on PM2.5 concentrations across China: a review of methodology and mechanism[J]. Environmental International, 2020, 139: 105558.
[4]SHARMA S, CHANDRA M, KOTA S H. Health effects associated with PM2.5: a systematic review[J]. Current Pollution Reports, 2020,6: 345-367.
[5]LELIEVELD J, EVANS J S, FNAIS M, et al. The contribution of outdoor air pollution sources to premature mortality on a global scale[J]. Nature, 2015, 525(7569): 367-371.
[6]CHENG M, TANG G, LV B, et al.Source apportionment of PM2.5 and visibility in Jinan, China[J]. Journal of Environmental Sciences, 2021, 102: 207-215.
[7]ZHAN Y, HUANG W, CAI T Q, et al. Concentration and chemical compositions of fine particles (PM2.5) during haze and non-haze days in Beijing[J]. Atmospheric Research, 2016, 175: 62-69.
[8]LONG T, PENG B, YANG Z, et al. Spatial distribution and formation mechanism of water-soluble inorganic ions in PM2.5 during a typical winter haze episode in guilin, China[J]. Archives of Environmental Contamination and Toxicology, 2020, 78: 367-376.
[9]MARIMUTHU A, SIHABUDEEN M, WU S P, et al. Source apportionment and seasonal variation of particulate matter (PM2.5) with emphasis on OC, EC, and WSOC in a tropical city Tiruchirappalli, Tamil Nadu, India[J]. Journal of Advanced Research in Applied Science, 2018, 5(3): 2394-8442.
[10]TIWARI S, DUMKA U C, KASKAOUTIS D G,et al. Aerosol chemical characterization and role of carbonaceous aerosol on radiative effect over Varanasi in central Indo-Gangetic plain[J]. Atmospheric Environment, 2016, 125: 437-449.
[11]LI J, ZHUANG G, HUANG K, et al. Characteristics and sources of air-borne particulate in Urumqi, China, the upstream area of Asia dust[J]. Atmospheric Environment,2008, 42(4): 776-787.
[12]YANG Y J, ZHOU R, YU Y, et al. Size-resolved aerosol water-soluble ions at a regional background station of Beijing, Tianjin, and Hebei, North China[J]. Journal of Environmental Sciences, 2017, 55: 146-156.
[13]LI L, LI Q, HUANG L, et al. Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: an insight into the impact of human activity pattern changes on air pollution variation[J]. Science of The Total Environment, 2020, 732: 139282.
[14]王申博, 范相阁, 和兵, 等. 河南省春节和疫情影响情景下PM2.5组分特征[J]. 中国环境科学, 2020, 40(12): 5115-5123.
[15]ZHANG Q, SHEN Z X. Optical properties and source identification of black carbon and brown carbon: comparison of winter and summer haze episodes in Xi’an, Northwest China[J]. Environmental Scicence Processes & Impacts, 2019, 21(12): 2058-2069.
[16]DAI Q L, BI X H, LIU B S. Chemical nature of PM2.5 and PM10 in Xi’an, China: insights into primary emissions and secondary particle formation[J]. Environmental Pollution, 2018, 240: 155-166.
[17]洪超. 西安市空气污染特征及重污染天气成因研究[D]. 兰州: 兰州大学, 2017.
[18]WEI N N, XU Z Y, LIU J W, et al. Characteristics of size distributions and sources of water-soluble ions in Lhasa during monsoon and non-monsoon seasons[J]. Journal of Environmental Sciences, 2019, 82(8): 157-170.
[19]CASTRO L M, PIO C A, HARRISON R M, et al. Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations[J]. Atmospheric Environment, 1999, 33(17): 2771-2781.
[20]王浥尘, 曹军骥, 张宁宁, 等. 西安大气细颗粒(PM1.0)化学组成及其对能见度的影响[J]. 地球科学与环境学报, 2014, 36(3): 94-101.
[21]SHI Y, HU F, XIAO Z S, et al. Comparison of four different types of planetary boundary layer heights during a haze episode in Beijing[J]. Science of The Total Environment, 2020, 711: 134928.
[22]CHEN H, HUO J, FU Q, et al. Impact of quarantine measures on chemical compositions of PM2.5 during the COVID-19 epidemic in Shanghai, China[J]. Science of The Total Environment, 2020, 743: 140758.
[23]XU J, GE X, ZHANG X, et al. COVID-19 impact on the concentration and composition of submicron particulate matter in a typical city of Northwest China[J]. Geophysical Research Letter, 2020, 47(9).
[24]ZHAO Z Y, CAO F, FAN M Y, etal. Coal and biomass burning as major emissions of NOX in Northeast China: implication from dual isotopes analysis of fine nitrate aerosols[J]. Atmospheric Environment, 2020, 42: 117762.
[25]LEKHENDRA T, SHICHANG K, DIPESH R. Water-soluble ionic composition of aerosols at urban location in the foothills of Himalaya, Pokhara Valley, Nepal[J]. Atmosphere, 2016, 7(8): 102.
[26]赵晓楠. 石家庄市大气颗粒物中碳组分污染特征及来源解析[D]. 石家庄: 河北科技大学, 2018.
[27]CHEN Y J, ZHI G R, FENG Y L, et al. Measurements of emission factors for primary carbonaceous particles from residential raw-coal combustion in China[J]. Geophysical Research Letters, 2006, 332(20): 382-385.
[28]康晖, 朱彬, 王红磊, 等. 长三角典型站点冬季大气PM2.5中OC、 EC污染特征[J]. 环境科学, 2018, 39(3): 961-971.
[29]薛凡利, 牛红亚, 武振晓, 等. 邯郸市PM2.5中碳组分的污染特征及来源分析[J]. 中国环境科学, 2020, 40(5): 1885-1894.
[30]CHOW J C, WATSON J G, LU Z Q, et al. Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX[J]. Atmospheric Environment, 1996, 30(12): 2079-2112.
[31]王群. 郑州、洛阳和平顶山城区PM2.5中含碳组分污染特征及源解析[D]. 郑州: 郑州大学, 2017.