孙 航1,贾均红1,2,杨 杰1,何乃如1,杨鑫然1,蔡粮臣1
(1. 陕西科技大学 机电工程学院,陕西 西安 710021;2. 中国科学院 兰州化学物理研究所,兰州 甘肃 730000)
DOI:10.13732/j.issn.1008-5548.2021.06.004
收稿日期: 2021-04-01,修回日期:2021-05-26,在线出版时间:2021-10-18 14:26。
基金项目:国家自然科学基金项目,编号:51675508;陕西省重点研发计划项目,编号:2019GY-173。
第一作者简介:孙航(1997—),男,硕士研究生,研究方向为高温润滑耐磨涂层。E-mail:787796716@qq.com。
通信作者简介:贾均红(1974—),男,博士,教授,博士生导师,研究方向为摩擦学及表面技术。E-mail:jhjia@sust.edu.cn。
摘要:通过高能球磨、喷雾造粒结合热处理的方法制备了可用于等离子喷涂的MoO3-Bi2O3(简称MB)纳米团聚复合粉体,采用激光粒度仪、霍尔流量计、高分辨场发射扫描电镜、X-射线衍射仪等方法考察球磨浆料中MB粉体的质量分数与热处理温度对复合粉体粒径分布、致密度、球形度、松装密度及流动性的影响,并在室温到800℃对该粉体所制得涂层的摩擦性能进行测试。结果表明,通过机械球磨和喷雾造粒获得粒径为33.77~54.96μm的MB纳米复合粉体;随着球磨浆料中MB粉体的质量分数的增加,喷雾造粒所得粉体形貌逐渐趋于规则球形,粒径分布先变窄再变宽,发现球磨浆料中MB粉体合适的质量分数为35%,但所得颗粒结构较为疏松不致密;实验发现,复合粉体的最佳热处理温度为500℃,此时粉体松装密度为1.98 g·cm-3,50 g粉体所需的流动时间为25.97 s,粒径为39.26~51.62μm,热处理过程中未发生固相反应产生新相;复合涂层在400℃时摩擦系数低至0.2,在600℃时磨损率低至9.28×10-5mm3/(N·m)。
关键词:高能球磨;喷雾造粒;热处理;纳米结构;等离子喷涂
Abstract:MoO3-Bi2O3(MB) nano-agglomerated composite powders for plasma spraying were prepared by high-energy ball milling and spray granulation combined with heat treatment. Using laser particle size analyzer,hall flowmeter,high-resolution field emission scanning electron microscope,X-ray diffractometer and other methods to investigate the effect of the mass fraction of MB powder in the ball mill slurry and the heat treatment temperature on the particle size distribution,density,sphericity,bulk density and fluidity of the composite powder. The friction performance of the coating made of the powder was tested at room temperature to 800 ℃ . The results showed that MB nano-structure composite powders with particle size distribution ranging from 33. 77 μm to 54. 96 μm were obtained by mechanical ball milling and spray granulation. With the increase of the mass fraction of MB powder in the ball-milling slurry,the morphology of the powders obtained by spray granulation gradually tended to be regular spherical,and the particle size distribution first narrowed and then widened. It was found that the suitable mass fraction of MB powder in the ball-milling slurry was 35%,but the structure particles of the powders obtained were loose and not dense. The results show that the optimal heat treatment temperature of the composite powder is 500 ℃,when the loose density is 1. 98 g/cm3,the flow time of 50 g powder is 25. 97 s,the particle size distribution is 39. 26 ~ 51. 62 μm,and no new phase is generated by solid phase reaction. The coating is as low as 0. 2 at 400 ℃,and the wear rate is as low as 9. 28 × 10-5 mm3/(N·m) at 600 ℃ .
Keywords:high energy ball mill; spraying-dry; heat treatment; nanostructure; plasma spraying
参考文献(References):
[1]马国政, 徐滨士, 王海斗, 等. 空间固体润滑材料的研究现状[J]. 材料导报, 2010, 24(1): 68-71.
[2]TSIGKIS V, BASHANDEH K, LAN P X, et al. Tribological behavior of PS400-related tribopairs for space exploration science direct[J]. Tribology International, 2020, 153: 106636.
[3]ZHU R Y, ZHANG P L, YU Z S, et al. Microstructure and wide temperature range self-lubricating properties of laser cladding NiCrAlY/Ag2O/Ta2O5 composite coating[J]. Surface and Coatings Technology, 2019, 383: 125248.
[4]LIU Y, FENG P, WANG Z, et al. Novel fabrication and enhanced photocatalytic MB degradation of hierarchical porous monoliths of MoO3 nanoplates[J]. Scientific Reports, 2017, 7(1): 1845.
[5]YAO Q, JIA J, CHEN T, et al. High temperature tribological behaviors and wear mechanisms of NiAl-MoO3/CuO composite coatings[J]. Surface and Coatings Technology, 2020, 395: 125910.
[6]WANG X P, FENG X C, LU C, et al. Mechanical and tribological properties of plasma sprayed NiAl composite coatings with addition of nanostructured TiO2/Bi2O3[J]. Surface & Coatings Technology, 2018, 349: 157-165.
[7]章登宏, 龚树萍, 周东祥, 等. 喷雾造粒因素对粉体颗粒形成的影响[J]. 中国陶瓷, 2000(6): 7-9,19.
[8]KHAN M, SOHAIL A, HAYAT T, et al. Entropy optimization analysis in MHD nanomaterials (TiO2-Go) flow with homogeneous and heterogeneous reactions[J]. Computer Methods and Programs in Biomedicine, 2020, 184: 105111.
[9]ELKHALIDI Z, HARTITI B, FADILI S, et al. Nickel oxide optimization using Taguchi design for hydrogen detection[J]. International Journal of Hydrogen Energy, 2018, 43(27): 12574-12583.
[10]HU C J, WANG X M, LI J J, et al. Kernel optimization for short-range molecular dynamics[J]. Computer Physics Communications, 2017, 211: 31-40.
[11]FORMICA G, MILICCHIO F, LACARBONARA W, et al. Hysteretic damping optimization in carbon nanotube nanocomposites[J]. Composite Structures, 2018, 194: 633-642.
[12]姚仟仟, 苟海龙, 贾均红, 等. 等离子喷涂NiAl-MoO3/BaO复合涂层的高温摩擦学性能及润滑机理研究[J]. 表面技术, 2020, 49(11): 93-100.
[13]SHI M C, XUE Z L ,ZHANG Z Y, et al. Effect of spraying powder characteristics on mechanical and thermal shock properties of plasma-sprayed YSZ thermal barrier coating[J]. Surface and Coatings Technology, 2020, 395, 125913.
[14]ZHANG J X, YAN D R, HE J N, et al. Influence of plasma spray parameter on microstructure and properties of nanostructured Al2O3-13wt% TiO2 coating[J]. Transactions of Materials & Heat Treatment, 2008, 29(2): 135-139.
[15]CHANG Q L, SONG W, WANG X, et al. The formation mechanism of non-uniform structure for the thermal spraying nanostructured feedstock prepared by spray-drying method[J]. China Surface Engineering, 2010, 23(6): 57-65.
[16]何明涛, 孟惠民, 王宇超, 等. 镁基六铝酸镧喷涂粉末制备及其热处理工艺研究[J]. 粉末冶金技术, 2018, 36(5): 370-376.
[17]颜建辉, 唐思文, 张厚安. 二硅化钼喷涂粉末的制备及其涂层组织结构[J]. 无机材料学报, 2011, 26(2): 203-208.
[18]WU L, XIE Z, LE G, et al. Investigation of the tribological behavior of graphene oxide nanoplates as lubricant additives for ceramic/steel contact[J]. Tribology International, 2018, 128: 113-120.
[19]胡伟, 张振宇, 梁补女, 等. 基于大气等离子喷涂的镍铬基粉末制备及其涂层组织结构[J]. 热喷涂技术, 2019, 11(2): 36-42.