杜玉成,史默涵,林彭辉,李 杨,甄 爽,马延龙,王金淑
(北京工业大学 材料与制造学部,北京 100124)
DOI:10.13732/j.issn.1008-5548.2021.06.003
收稿日期: 2021-08-10,修回日期:2020-08-31,在线出版时间:2021-10-18 14:27。
基金项目:国家自然科学基金,编号:51974011;宁夏回族自治区重点研发计划项目,编号:2019BFG02032。
第一作者简介:杜玉成(1963—),男,博士,教授,硕士生导师,研究方向为环境功能材料、非金属矿物材料。E-mail: ychengdu@bjut.edu.cn。
摘要:为了更好地低成本处理水体中的氨氮、硫等污染物,对天然矿物蛭石颗粒进行NaCl层间处理、对火山岩颗粒进行FeCl3表面处理。利用扫描电镜、X射线衍射、红外光谱等手段对矿物颗粒进行表征;同时研究蛭石和火山岩处理前后对氨氮、硫的吸附性能,分析讨论2种矿物颗粒对氨氮、硫的吸附机理。结果表明:在最佳条件下,Na化蛭石对氨氮的吸附容量由原来的21.4 mg/g提高到29.3 mg/g,对水体中氨氮的去除率由86.7%提高到93.4%;改性火山岩对硫化物的吸附容量由原来的3.1 mg/g提高到36.9 mg/g;蛭石颗粒对氨氮的去除以物理吸附为主,火山岩颗粒对硫的吸附以化学吸附为主。
关键词:蛭石;火山岩;氨氮吸附;表面修饰
Abstract:In order to preferably treat ammonia nitrogen and sulfur in water bodies at low cost,the natural mineral vermiculite and volcanic rock particles were modified by NaCl and FeCl3,respectively. Scanning electron microscope(SEM),X-ray diffraction(XRD) and fourier transform infrared spectrometer(FTIR) techniques were adopted to characterize the mineral particles. The adsorption performances as well as mechanism of vermiculite and volcanic rock before and after modification towards ammonia nitrogenand sulfur were investigated,respectively. By comparison to raw vermiculite,after modification,the adsorption capacity of vermiculite towards ammonia nitrogen increased from 21. 4 mg/g to 29. 3 mg/g under the optimal conditions,and the removal efficiency increased from 86. 7% to 93. 4%. After modification,the adsorption capacity of volcanic rock for sulfide increased from 3. 1 mg/g to 36. 9 mg/g. The removal of ammonia nitrogen by vermiculite particles is mainly physical adsorption,and the removal of sulfur by volcanic rock particles is mainly chemical adsorption.
Keywords:vermiculite; volcanic rock; ammonia nitrogen adsorption; surface modification
参考文献(References):
[1]ZHONG M F,TING S. A novel selective hybrid cation exchanger for low-concentration ammonia nitrogen removal from natural water and secondary wastewater[J]. Chemical Engineering Journal, 2015, 281: 295-302.
[2]FAN J W,WU H X,LIU R Y,et al. Non-thermal plasma combined with zeolites to remove ammonia nitrogen from wastewater[J]. Journal of Hazardous Materials, 2021, 401: 123627-123635.
[3]ZHOU Q,YIN H B,WANG A L,et al. Preparation of hollow B-SiO2@TiO2 composites and their photocatalytic performances for degradation of ammonia-nitrogen and green algae in aqueous solution[J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2535-2543.
[4]刘富龙. 氨氮浓度对硝化反应影响的研究[D]. 晋中: 太原理工大学, 2009.
[5]李丛丛. 废水中硫化物的生成、硫化物对生化系统的影响及其处理技术的研究[D]. 青岛: 青岛科技大学, 2014.
[6]LBTISSEM B, HÉDI B A, HASSEN C, et al. Hydrogen sulphide removal from the effluents of a phosphoric acid production unit by absorption into chlorinated seawater under alkaline conditions[J]. Comptesrendus-Chimie, 2016, 19(4): 517-524.
[7]陈理想, 吴平霄, 杨林, 等. 有机改性蛭石的特性及其对Hg2+吸附性能的研究[J]. 环境科学学报, 2015, 35(4): 1054-1060.
[8]BRI
O G D V, SILVA M G C D, VIEIRA M G R A. Neodymium recovery from aqueous solution through adsorption/desorption onto expanded vermiculite[J]. Applied Clay Science, 2020, 198: 105825-105837.
[9]陈理想,吴平霄, 杨林,等. 巯基乙胺改性蛭石对水体中Ag(I)的吸附性能研究[J]. 中国环境科学, 2015, 35(4): 1109-1115.
[10]MITSIS I, GODELITSAS A, GOETTLICHER J, et al. Chromium-bearing clays in altered ophiolitic rocks fromcrommyonia(Soussaki) volcanic area, Attica, Greece[J]. Applied Clay Science, 2018, 162: 362-374.
[11]XIAO S T, LU Y, FENG M, et al. Multifunctional FeS2 the ranostic nanoparticles for photothermal-enhanced chemodynamic/photodynamic cancer therapy and photoacoustic imaging[J]. Chemical Engineering Journal, 2020, 396: 125294-125307.
[12]IKKURTHI K D S S, REDDY M N K. Facile synthesis of FeS2/PVP composite as high-performance electrodes for supercapacitors[J]. Journal of Energy Storage, 2020, 28: 101216-101224.
[13]FENG D M, ZHANG X, SUN Y, et al. Surface-defective FeS2 for electrochemical NH3 production under ambient conditions[J]. Nano Materials Science, 2020, 2(2): 132-139.
[14]REHMAN U, JACOB J, MAHMOOD K, et al. Improving the thermoelectric performance of hydrothermally synthesized FeS2 nanoparticles by post sulfurization[J]. Ceramics International, 2020, 46(12): 20496-20499.
[15]MA S F, ABIGAIL N, DEREK B, et al. Removal of H2S via an iron catalytic cycle and iron sulfide precipitation in the water column ofdeadend tributaries[J]. Estuarine, Coastal and Shelf Science, 2006, 70(3): 461-472.