李智颖,顾傲天,付 豪,陈九玉,陈凯伟,杨 毅
(南京理工大学 环境与生物工程学院; 江苏省化工污染控制与资源化重点实验室,江苏 南京 210094)
DOI:10.13732/j.issn.1008-5548.2021.06.002
收稿日期: 2021-08-21,修回日期:2021-09-17,在线出版时间:2021-10-18 14:27。
基金项目:国家自然科学基金项目,编号:11805101;中央高校基本科研业务费专项资金资助项目,编号:30921013110;江苏省环保科研课题项目,编号:JSZCD 2018-012;江苏省凹土资源利用重点实验室开放课题项目,编号:HPK202001。
第一作者简介:李智颖(1998—),女,硕士研究生,研究方向为环境功能材料。E-mail: 1192300153@qq.com。
通信作者简介:杨毅(1973—),男,博士,研究员,博士生导师,研究方向为环境功能材料。E-mail: yangyi@njust.edu.cn。
摘要:为了提高材料对亚甲基蓝的光催化性能,通过原位生长对不同锌铝物质的量比的Zn-Al层状双氧化物(LDO)进行修饰,合成ZIF-8@LDO复合材料;采用X射线衍射、扫描电子显微镜等方法对复合材料进行详细的表征。结果表明:相较于未修饰的LDO材料,所制备的复合材料对亚甲基蓝具有较好的吸附性能和光催化降解活性。通过改变ZIF-8@LDO合成过程中锌铝物质的量的比,发现其值为2时,ZIF-8@LDO-2复合材料在150 min内,对亚甲基蓝的去除率超过99.3%;在pH为4~6范围内效果最佳,重复使用4次后,仍能保持86.1%的降解率。
关键词:亚甲基蓝;沸石咪唑酯骨架;层状双氧化物;光催化
Abstract:In order to improve the photocatalytic performance of methylene blue,Zn-Al layered double oxides(LDO) with different molar ratio of zinc to aluminum were modified by in-situ growth,and ZIF-8@ LDO composites were synthesized. The composites were characterized in detail by means of X-ray diffraction and scanning electron microscope. The results show that compared with the unmodified LDO materials,the prepared composites have better adsorption properties and photocatalytic degradation activity for methylene blue. By changing the ratio of zinc to aluminum in the process of ZIF-8@ LDO synthesis,it is found that when the mass ratio of zinc to aluminum is 2,the removal rate of methylene blue of ZIF-8@ LDO-2 composite in 150 min is more than 99. 3%. The effect is the best in the range of 4 to 6,and the degradation rate of 86. 1% can be maintained after being reused for 4 times.
Keywords:methylene blue; zeolitic imidazolate framework; layered double oxide; photocatalysis
参考文献(References):
[1]JAMES J B, LIN Y S. Kinetics of ZIF-8 thermal decomposition in inert, oxidizing, and reducing environments[J]. The Journal of Physical Chemistry C, 2016, 120(26): 14015-14026.
[2]LI P Z, ARANISHI K, XU Q. ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. Chemical Communications, 2012, 48(26): 3173-3175.
[3]LIN KY A, LEE W D. Self-assembled magnetic graphene supported ZIF-67 as a recoverable and efficient adsorbent for benzotriazole[J]. Chemical Engineering Journal, 2016, 284: 1017-1027.
[4]NGUYEN N T T, LO T N H, KIM J, et al. Mixed-metal zeolitic imidazolate frameworks and their selective capture of wet carbon dioxide over methane[J]. Inorganic Chemistry, 2016, 55(12): 6201-6207.
[5]WANG C, YAN X, HU X, et al. Metalazolate framework-6 for fast adsorption removal of phthalic acid from aqueous solution[J]. Journal of Molecular Liquids, 2016, 223: 427-430.
[6]JUNG B K, JUN J W, HASAN Z, et al. Adsorptive removal of parsanilic acid from water using mesoporous zeolitic imidazolate framework-8[J]. Chemical Engineering Journal, 2015, 267: 9-15.
[7]LIN K, CHANG H A. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water[J]. Chemosphere, 2015, 139: 624-631.
[8]PAN Y, LI Z, ZHANG Z, et al. Adsorptive removal of phenol from aqueous solution with zeolitic imidazolate framework-67[J]. Journal of Environmental Management, 2016, 169: 167-173.
[9]王丙佳, 何曼丽, 陈九玉, 等. 微波法制备Cu2O@ZIF-8及其对废水中U(Ⅵ)吸附性能[J]. 中国粉体技术, 2021, 27(4): 8-15.
[10]SUE Y C, WU J W, CHUNG S E, et al. Synthesis of hierarchical micro/mesoporous structures via solid-aqueous interface growth: zeolitic imidazolate framework-8 on siliceous mesocellularfoams for enhanced pervaporation of water/ethanol mixtures[J]. Acs Applied Materials & Interfaces, 2014, 6(7): 5192-5198.
[11]吕晓丽, 张春芳, 白云翔, 等. 原位生长法制备ZIF-8/PAN超滤膜用于染料废水处理[J]. 水处理技术, 2016, 42(7): 30-34.
[12]FAN G, LI F, EVANS D G, et al. Catalytic applications of layered double hydroxides: recent advances and perspectives[J].Chemical Society Reviews, 2014, 43(20): 7040-7066.
[13]王卫东, 郝瑞霞, 张晓娴, 等. 高效磷吸附剂Mg/Al-LDO的制备及除磷机制[J]. 环境科学, 2017, 38(2): 572-579.
[14]LI P, HUANG P P, WEI F F, et al. Monodispersed Pd clusters generated in situ by their own reductive support for high activity and stability in cross-coupling reactions[J]. Journal of Materials Chemistry A, 2014, 2(32): 12739-12745.
[15]LIU P F, TAO K, LI G C, et al. In situ growth of ZIF-8 nanocrystals on layered double hydroxide nanosheets for enhanced CO2 capture[J]. Dalton Transactions, 2016, 45(32): 12632-12635.
[16]NI J, JING B, LIN J, et al. Effect of rare earth on the performance of Ru/MgAl-LDO catalysts for ammonia synthesis[J].Journal of Rare Earths, 2018, 36(2): 135-141.
[17]MI J, LAN Z, CHEN J, et al. Mg/Al-LDO mixed oxide derived from layered double hydroxide: A potential support for Co/Mo sulfur-resistant water-gas shift catalyst[J]. Catalysis Communications, 2016, 78: 44-47.
[18]AHMED A, TALIB Z A, BIN H M Z, et al. Zn-Al layered double hydroxide prepared at different molar ratios: Preparation, characterization, optical and dielectric properties [J]. Journal of Solid State Chemistry, 2012, 191: 271-278.
[19]WANG Q, DERMOT O H. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets[J]. Chemical Reviews, 2012, 112(7): 4124-4155.
[20]LEROUX F, BESSE J P. Polymer interleaved layered double hydroxide: anew emerging class of nanocomposites[J]. Chemistry of Materials, 2001, 13(10): 3507-3515.
[21]ZHAO X, ZHANG F, XU S, et al. From layered double hydroxides to ZnO-based mixed metal oxides by thermal decomposition: transformation mechanism and UV-blocking properties of the product[J]. Chemistry of Materials, 2010, 22(13): 3933-3942.
[22]JING H P, WANG C C, ZHANG Y W, et al. Photocatalytic degradation of methylene blue in ZIF-8[J]. RSC Advances,2014, 97(4): 54454-54462.