张晓静a,沈志刚a,b,刘 磊b,刘立新b,赵一志a
(北京航空航天大学 a. 航空科学与工程学院 粉体技术研究开发北京市重点实验室; b. 材料科学与工程学院,北京 100083)
DOI:10.13732/j.issn.1008-5548.2021.06.001
收稿日期: 2021-08-04,修回日期:2021-09-27,在线出版时间:2021-10-26 16:11。
基金项目:北京市教委共建项目,编号:25500002016105002;航天科学技术基金项目,编号:BH2020-09。
第一作者简介:张晓静(1984—),女,博士研究生,实验师,研究方向为二维纳米材料制备及防腐蚀应用。E-mail: zhangxiaojing@buaa.edu.cn。
通信作者简介:沈志刚(1958—),男,博士,教授,博士生导师,研究方向为二维纳米材料制备及应用。E-mail: shenzhg@buaa.edu.cn。
摘要:为了研究原子氧和电化学腐蚀对铝合金的影响,将可以抵抗原子氧腐蚀的氮化硼纳米片(BNNS)添加到环氧树脂中,用于铝合金的抗电化学腐蚀,并进行极化曲线及阻抗测试。结果表明:添加质量分数为0.20%的BNNS,可使纯环氧树脂涂层点蚀电位正移323 mV,钝化区间增大5倍左右,阻抗增大15倍,抗电化学腐蚀效果优异; BNNS使电解液中的离子在涂层内的扩散通道变得弯曲狭长,增强了涂层抗电化学腐蚀的能力。
关键词:电化学腐蚀;铝合金;氮化硼纳米片;复合材料涂层;原子氧腐蚀
Abstract:In order to study the influence of atomic oxygen and electrochemical corrosion on aluminum alloy,boron nitride nanosheets(BNNS),which can resists atomic oxygen corrosion,were added into epoxy resin to protect aluminum alloy form electrochemical corrosion,and the tests of polarization curve and impedance were carried. The results show that compared with pure epoxy resin,the 0. 20% of BNNS can make the pitting potential of the coating increase by 323 mV,the passivation interval increase by 5 times,and the impedance increase by 15 times,and satisfactory effects were obtained. BNNS makes the diffusion channels of ions in the electrolyte become curved and narrow,thus enhancing the coating resistance to electrochemical corrosion.
Keywords:electrochemical corrosion; aluminum alloy; boron nitride nanosheet; composite coating; atomic oxygen corrosion
参考文献(References):
[1]阳建君, 旷焕, 范才河, 等. 2A96铝合金在NaCl溶液中不同腐蚀时间的腐蚀行为研究[J]. 金属材料与冶金工程, 2020, 48(1): 48-64.
[2]王洪仁, 吴建华, 王均涛, 等. 5083铝合金在海水中的腐蚀电化学行为及活性氯影响研究[J]. 电化学, 2003, 9(1): 60-65.
[3]张海永, 闫海鹏, 曹京宜, 等. AA5083铝合金在海水中的腐蚀行为研究[J]. 材料导报, 2015, 29(22): 105-108.
[4]DEVER J A, MILLER S K, SECHKAR E A, et al. Space environment exposure of polymer films on the materials international space station experiment: results from MISSE 1 and MISSE 2[J]. High Perform Polym, 2008, 20(4/5): 371-387.
[5]SHIMAMURA H, Nakamura T. Mechanical properties degradation of polyimide films irradiated by atomic oxygen[J]. PolymDegrad Stabil, 2009, 94(9): 1389-1396.
[6]CUN H Y, Iannuzzi M, Hemmi A, et al. Immobilizing individual atoms beneath a corrugated single layer of boron nitride[J]. Nano Lett, 2013, 13(5): 2098-2103.
[7]TANG C C, BANDO Y, SATO T, et al. SiC and its bicrystalline nanowires with uniform BN coatings[J]. Appl Phys Lett, 2002, 80(24): 4641-4643.
[8]CHENG L, SHI Y B, HAO Y, et al. Multilayer boron nitride nanofilm as an effective barrier for atomic oxygen irradiation[J]. Appl Surf Sci, 2020, 504:144394.
[9]LIU L, SHEN Z G, ZHENG Y T, et al. Boron nitride nanosheets with controlled size and thickness for enhancing mechanical properties and atomic oxygen erosion resistance[J]. RSC Adv, 2014, 4(71): 37726-37732.
[10]YI M, SHEN Z G, ZHAO X H, et al. Boron nitride nanosheets as oxygen-atom corrosion protective coatings[J]. Appl Phys Lett, 2014, 104(14): 143101.
[11]易敏, 沈志刚, 刘磊, 等. 氮化硼纳米片作为抗原子氧腐蚀填料的应用[J]. 北京航空航天大学学报, 2015, 41(8): 1499-1504.
[12]CUI G, BIZ X, ZHANG R Y, et al. A comprehensive review on graphene-based anti-corrosive coatings[J]. Chem Eng J, 2019, 373: 104-121.
[13]CUI M J, REN S M, CHEN J, et al. Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets[J]. Appl Surf Sci, 2017, 397: 77-86.
[14]PARDEL A, ZHI C Y, BANDO Y, et al. Boron nitride nanosheet noatings with controllable water repellency[J]. ACS Nano, 2011, 5(8): 6507-6515.
[15]ZHAO X H, SHEN Z G, XING Y S, et al. A study of the reaction characteristics and mechanism of Kapton in a plasma-type ground-based atomic oxygen effects simulation facility[J]. J Phys D-Appl Phys, 2001, 34(15): 2308-2314.
[16]CAZAUBON B, PAILLOUS A, SIFFRE J, et al. Mass spectrometric analysis of reaction products of fast oxygen atoms-material interactions[J]. Journal of Spacecraft and Rockets, 1998, 35(6): 797-804.
[17]DIKICI B, OZDEMIR I. FeB and FeB/h-BN based anti-corrosive composite coatings for aluminium alloys[J]. Anti-Corros Methods Mater, 2012, 59(5): 246-254.
[18]单毅敏, 罗兵辉, 柏振海. 5083铝合金在3.5% NaCl溶液中的电化学腐蚀行为研究[J]. 铝加工, 2007, 173(1): 11-14.
[19]彭文才. 铝合金在海水中的腐蚀性能研究 [D]. 长沙: 湖南大学, 2010.
[20]张鉴清, 曹楚南. 电化学阻抗谱方法研究评价有机涂层[J]. 腐蚀与防护, 1998, 19(3): 99-104.
[21]许刚, 曹楚南, 林海潮, 等. 纯铝在NaCl溶液中活化溶解时电化学行为研究[J]. 腐蚀科学与防护技术, 1998, 10(6): 12-17.
[22]CUI M J, REN S M, QIN S L, et al. Processable poly(2-butylaniline)/hexagonal boron nitride nanohybrids for synergetic anticorrosive reinforcement of epoxy coating[J]. Corrosion Sci, 2018, 131: 187-198.
[23]于倩. 功能化氧化石墨烯/环氧复合涂层的制备及其对碳钢的腐蚀保护作用研究[D]. 济南: 山东大学, 2019.