ISSN 1008-5548

CN 37-1316/TU

2022年28卷  第1期
<返回第1期

碳化钛及其衍生物在环境光催化领域的应用

Application of titanium carbide and its derivatives in environmental photocatalysis

赵福磊a,耿上帅a,丁浩琳a,冯 锐a,张 勇b,闫 涛a

(济南大学 a. 水利与环境学院;b. 化学化工学院,山东 济南 250022)


DOI:10.13732/j.issn.1008-5548.2022.01.014

收稿日期: 2021-10-12,修回日期:2021-11-23,在线出版时间:2021-12-03。

基金项目:国家自然科学基金项目,编号:21775053。

第一作者简介:赵福磊(1996—),男,硕士研究生,研究方向为光催化分解水制氢。E-mail:Zhaofulei37@163.com。

通信作者简介:闫涛(1980—),男,副教授,博士,硕士生导师,研究方向为环境功能材料。E-mail:yantujn@163.com。


摘要:综述碳化钛(Ti3C2)及其衍生物基复合材料的制备方法,包括液相刻蚀法、物理研磨-剥离法制备二维Ti3C2的方法,水热-溶剂热法、机械研磨法制备Ti3C2量子点的方法,水热氧化法、煅烧氧化法制备Ti3C2衍生物的方法,以及水热法、煅烧法、静电自组装法、机械-超声波混合法、冷凝回流法等制备Ti3C2基复合材料的方法;概括Ti3C2及其衍生物基复合材料在光催化的产氢、还原CO2、降解有机污染物、固氮等环境领域的应用。认为需要开发更加环保安全、耗时短的Ti3C2制备方法,并探索可通过控制Ti3C2的氧化、提高其抗光腐蚀能力,通过控制Ti3C2的表面端基优化其光催化性能。

关键词:碳化钛;光催化;环境治理;清洁能源

Abstract:Preparation methods of titanium carbide(Ti3C2) and its derivatives matrix composites were reviewed, including methods of liquid phase etching and physical abration-stripping for two-dimensional Ti3C2, hydrothermal solvothermal method and mechanical grinding method for Ti3C2 quantum dots, hydrothermal oxidation method and calcination oxidation method for Ti3C2 derivatives, and the preparation of Ti3C2 matrix composites by hydrothermal method, calcination method and electrostatic self-assem blymethod, mechanical-ultrasonic mixture method, condensation reflux method. The applications of Ti3C2 and its derivative matrix composites in photocatalytic hydrogen production, CO2 reduction, degradation of organic pollutants and nitrogen fixation it environmental fields were reviewed also.It is suggested that a more environmentally friendly, safe and time-consuming preparation methods of Ti3C2 should be developed, and the oxidation control, photocorrosion resistance and surface terminal group control of Ti3C2 should also be explored to optimize the photocatalytic performance.

Keywords:titanium carbide; photocatalysis; environmental governance; clean energy


参考文献(References):

[1]NAGUIB M, KURTOGLU M, PRESSER V, et al.Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J].Advanced Materials, 2011, 2(37): 4248-4253.

[2]ZHAO P, JIAN M P, ZHANG Q, et al.A new paradigm of ultrathin 2D nanomaterial adsorbents in aqueous media: graphene and GO, MoS2, MXenes, and 2D MOFs[J].Journal of Materials Chemistry A, 2019, 7(28): 16598-16621.

[3]EKLUND P, BECKERS M, JANSSON U, et al.The Mn+1AXn phases: materials science and thin-film processing[J].Thin Solid Films, 2010, 518(8): 1851-1878.

[4]NAGUIB M, MOCHALIN V N, BARSOUM M W, et al.MXenes: a new family of two-dimensional materials[J].Advanced Materials, 2014, 26(7): 992-1005.

[5]NAGUIB M, HALIM J, LU J, et al.New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries[J].Journal of the American Chemical Society, 2013, 135(43): 15966-15969.

[6]XU X S, SUN B T, LIANG Z Q, et al.High-performance electrocatalytic conversion of N2 to NH3 using 1T-MoS2 anchored on Ti3C2 MXene under ambient conditions[J].ACS Applied Materials Interfaces, 2020, 12(23): 26060-26067.

[7]ZHANG X B, SHAO B Y, SUN Z M, et al.Platinum nanoparticle-deposited Ti3C2Tx MXene for hydrogen evolution reaction[J].Industrial & Engineering Chemistry Research, 2020, 59(5): 1822-1828.

[8]WANG H M, ZHAO R, HU H X, et al.0D/2D heterojunctions of Ti3C2 MXene QDs/SiC as an efficient and robust photocatalyst for boosting the visible photocatalytic NO pollutant removal ability[J].ACS Applied Materials Interfaces, 2020, 12(36): 40176-40185.

[9]YIN Q, CAO Z Z, WANG Z Y, et al.Z-scheme TiO2@Ti3C2/Cd0.5Zn0.5S nanocomposites with efficient photocatalytic performance via one-step hydrothermal route[J].Nanotechnology, 2021, 32(1): 015706.

[10]VENKATESHALU S, GRACE A N.MXenes-a new class of 2D layered materials: synthesis, properties, applications as supercapacitor electrode and beyond[J].Applied Materials Today, 2020, 18(3): 100509.

[11]叶滨, 吕会议, 陈青云, 等.MAX相金属陶瓷材料研究进展与展望[J].西南民族大学学报(自然科学版), 2021, 47(1): 83-96.

[12]WU Z B, LIANG Y S, YUAN X Z, et al.MXene Ti3C2 derived Z-scheme photocatalyst of graphene layers anchored TiO2/g-C3N4 for visible light photocatalytic degradation of refractory organic pollutants[J].Chemical Engineering Journal, 2020, 394: 124921.

[13]GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al.Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J].Nature, 2014, 516: 78-81.

[14]HONG L F, GUO R T, YUAN Y, et al.Recent progress of two-dimensional MXenes in photocatalytic applications: a review[J].Materials Today Energy, 2020, 18: 100521.

[15]TIAN S, CHENG G J, TANG Z F, et al.Fabrication of two-dimensional Ti3C2Tx MXenes by ball milling pretreatment and mild etchant and their microstructure[J].Ceramics International, 2020, 46(18): 28949-28954.

[16]XIAO R, ZHAO C X, ZOU Z Y, et al.In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet schottky heterojunction toward enhanced photocatalytic hydrogen evolution[J].Applied Catalysis B: Environmental, 2020, 268: 118382.

[17]ZENG Z P, YAN Y B, CHEN J, et al.Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots[J].Advanced Functional Materials, 2019, 29(2): 1806500.

[18]XUE Q, ZHANG H J, ZHU M S, et al.Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging[J].Advanced Materials, 2017, 29(15): 1604847.

[19]XU G F, NIU Y S, YANG X C, et al.Preparation of Ti3C2Tx MXene-derived quantum dots with white/blue-emitting photoluminescence and electrochemiluminescence[J].Advanced Optical Materials, 2018, 6(24): 1800951.

[20]ALIJANI H, REZK AR, KHOSRAVI F, et al.Acoustomicrofluidic synthesis of pristine ultrathin Ti3C2Tz MXene nanosheets and quantum dots[J].ACS Nano, 2021, 15(7): 12099-12108.

[21]ZHANG T R, JIANG X, LI G C, et al.A red-phosphorous-assisted ball-milling synthesis of few-layered Ti3C2Tx(MXene)nanodot composite[J].Chem Nano Mat, 2018, 4(1): 56-60.

[22]TIAN P, HE X, ZHAO L, et al.Ti3C2 nanosheets modified Zr-MOFs with schottky junction for boosting photocatalytic HER performance[J].Solar Energy, 2019, 188: 750-759.

[23]LI Y J, YIN Z H, JI G R, et al.2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed(001)facets toward enhanced photocatalytic hydrogen production activity[J].Applied Catalysis B: Environmental, 2019, 246: 12-20.

[24]PENG C, YANG X F, LI Y H, et al.Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity[J].ACS Applied Materials Interfaces, 2016, 8(9): 6051-6060.

[25]YUAN W Y, CHENG L F, ZHANG Y N, et al.2D-layered carbon/TiO2 hybrids derived from Ti3C2 MXenes for photocatalytic hydrogen evolution under visible light irradiation[J].Advanced Materials Interfaces, 2017, 4(20): 1700577.

[26]LOW J X, ZHANG L Y, TONG T, et al.TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity[J].Journal of Catalysis, 2018, 361: 255-266.

[27]WANG P Y, LU X X, BOYJOO Y, et al.Pillar-free TiO2/Ti3C2 composite with expanded interlayer spacing for high-capacity sodium ion batteries[J].Journal of Power Sources, 2020, 451: 227756.

[28]LI Y J, DENG X T, TIAN J, et al.Ti3C2 MXene-derived Ti3C2/TiO2 nanoflowers for noble-metal-free photocatalytic overall water splitting[J].Applied Materials Today, 2018, 13: 217-227.

[29]CHENG L, CHEN Q, LI J, et al.Boosting the photocatalytic activity of CdLa2S4 for hydrogen production using Ti3C2 MXene as a co-catalyst[J].Applied Catalysis B: Environmental, 2020, 267: 118379.

[30]KE T, SHEN S Y, RAJAVEL K, et al.In situ growth of TiO2 nanoparticles on nitrogen-doped Ti3C2 with isopropyl amine toward enhanced photocatalytic activity[J].Journal of Hazardous Materials, 2021, 402: 124066.

[31]SU T M, HOOD Z D, NAGUIB M, et al.Monolayer Ti3C2Tx as an effective Co-catalyst for enhanced photocatalytic hydrogen production over TiO2[J].ACS Applied Energy Materials, 2019, 2(7): 4640-4651.

[32]WANG W Y, HOOD ZD, ZHANG X Y, et al.Construction of 2D BiVO4-CdS-Ti3C2Tx heterostructures for enhanced photo-redox activities[J].Chem Cat Chem, 2020, 12(13): 3496-3503.

[33]YUAN Z T, HUANG H S, LI N J, et al.All-solid-state WO3/TQDs/In2S3 Z-scheme heterojunctions bridged by Ti3C2 quantum dots for efficient removal of hexavalent chromium and bisphenol A[J].Journal of Hazardous Materials, 2021, 409: 125027.

[34]HUANG K L, LI C H, MENG X C.In-situ construction of ternary Ti3C2 MXene@TiO2/ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution[J].Journal of Colloid and Interface Science, 2020, 580: 669-680.

[35]DU X, ZHAO T X, XIU Z Y, et al.BiVO4@ZnIn2S4/Ti3C2 MXene quantum dots assembly all-solid-state direct Z-Scheme photocatalysts for efficient visible-light-driven overall water splitting[J].Applied Materials Today, 2020, 20: 100719.

[36]WANG C J, SHEN J, CHEN R G, et al.Self-assembled BiOCl/Ti3C2Tx composites with efficient photo-induced charge separation activity for photocatalytic degradation of p-nitrophenol[J].Applied Surface Science, 2020, 519: 46175.

[37]LI Y J, DING L, LIANG Z Q, et al.Synergetic effect of defects rich MoS2 and Ti3C2 MXene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2[J].Chemical Engineering Journal, 2020, 383: 123178.

[38]HUANG G M, LI S Z, LIU L J, et al.Ti3C2 MXene-modified Bi2WO6 nanoplates for efficient photodegradation of volatile organic compounds[J].Applied Surface Science, 2020, 503: 144183.

[39]ZOU G D, LIU B Z, GUO J X, et al.Synthesis of nanoflower-shaped MXene derivative with unexpected catalytic activity for dehydrogenation of sodium alanates[J].ACS Applied Materials Interfaces, 2017, 9(8): 7611-7618.

[40]TANG R D, XIONG S, GONG D X, et al.Ti3C2 2D MXene: recent progress and perspectives in photocatalysis[J].ACS AppliedMaterials Interfaces, 2020, 12(51): 56663-56680.

[41]ZHUANG Y, LIU Y F, MENG X F.Fabrication of TiO2 nanofibers/MXene Ti3C2 nanocomposites for photocatalytic H2 evolution by electrostatic self-assembly[J].Applied Surface Science, 2019, 496: 143647.

[42]LIU Q R, TAN X Y, WANG S B, et al.MXene as a non-metal charge mediator in 2D layered CdS@Ti3C2@TiO2 composites with superior Z-scheme visible light-driven photocatalytic activity[J].Environmental Science: Nano, 2019, 6(10): 3158-3169.

[43]YANG C, TAN Q Y, LI Q, et al.2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: dual effects of urea[J].Applied Catalysis B: Environmental, 2020, 268: 118738.

[44]CAO S W, SHEN B J, TONG T, et al.2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction[J].Advanced Functional Materials, 2018, 28(21): 1800136.

[45]WANG H M, ZHAO R, QIN J Q, et al.MIL-100(Fe)/Ti3C2 MXene as a schottky catalyst with enhanced photocatalytic oxidation for nitrogen fixation activities[J].ACS Applied Materials Interfaces, 2019, 11(47): 44249-44262.

[46]QIAN J, ZHAO S, DANG W Q, et al.Photocatalytic nitrogen reduction by Ti3C2 MXene derived oxygen vacancy-rich C/TiO2[J].Advanced Sustainable Systems, 2021, 5(4): 2000282.

[47]GAO W G, LI X M, LUO S J, et al.In situ modification of cobalt on MXene/TiO2 as composite photocatalyst for efficient nitrogen fixation[J].Journal of Colloid and Interface Science, 2020(585): 20-29.