邓 南,王玉军,骆广生
(清华大学 化学工程联合国家重点实验室,北京 100084)
DOI:10.13732/j.issn.1008-5548.2022.01.013
收稿日期: 2021-06-07,修回日期:2021-11-26,在线出版时间:2021-12-07。
基金项目:国家自然科学基金项目,编号:21991102。
第一作者简介:邓南(1996—),男,硕士研究生,研究方向为微反应器纳米材料的制备。E-mail:dengn14@126.com。
通信作者简介:
王玉军(1973—),男,教授,博士,博士生导师,研究方向为膜分离及膜反应分离一体化技术、高效分离材料制备。
E-mail:wangyujun@mail.tsinghua.edu.cn。
摘要:以氢氧化钡和硫酸为原料,采用搅拌法和膜分散微反应器分别制备纳米硫酸钡颗粒和硫酸钡溶液,并采用XRD、TEM等手段进行测试和表征,研究常温老化和低温老化时纳米硫酸钡的生成机理,探讨氯离子和钠离子对硫酸钡性能的影响。结果表明:当氢氧化钡和硫酸的溶液浓度分别为0.5 mol/L、溶液体积流量为60 mL/min、低温老化温度为5℃时,可制备出粒径为32 nm、统计平均粒径为(24.4±5.3) nm的硫酸钡颗粒,静置24 h后的硫酸钡溶液的悬浮比高达98.1%,其性能优于常温老化法和传统搅拌法制备的;在低温老化条件下,硫酸钡颗粒生长缓慢,晶粒发育程度较低,XRD衍射峰峰强较弱,硫酸钡颗粒的粒径较小;纳米硫酸钡溶液的悬浮性与其zeta电位正相关,高悬浮性硫酸钡的zeta电位分布集中且均为正值,悬浊液稳定,分散性好;氯离子对硫酸钡颗粒粒径分布的影响较小;钠离子会显著降低硫酸钡溶液悬浮性,应避免钠离子的干扰。
关键词:纳米硫酸钡;膜分散微反应器;悬浮性;低温老化
Abstract:Using barium hydroxide and sulfuric acid as raw materials, nano barium sulfate particles and barium sulfate solution were prepared by batch method and membrane dispersion microreactor and characterized by XRD and TEM. The formation mechanism of nano barium sulfate during normal temperature aging and low temperature aging was studied, and the effects of chloride ions and sodium ions on the properties of barium sulfate were discussed. The results show that when the concentration of barium hydroxide and sulfuric acid solution is 0.5 mol/L, the solution volume flow is 60 mL/min and the low-temperature aging temperature is 5 ℃, nano barium sulfate particles with particle size of 32 nm and statistical average particle size of(24.4±5.3) nm can be prepared. After standing for 24 h, the suspension ratio of barium sulfate solution is as high as 98.1%, which is better than that prepared by room temperature aging method and traditional batch method. Under the condition of low temperature aging, barium sulfate particles grow slowly, the degree of grain development is low, the intensity of XRD diffraction peak is weak, leading to small particle size of barium sulfate. The suspension of nano barium sulfate solution is positively correlated with its zeta potential. The zeta potential distribution of highly suspended barium sulfate is concentrated and positive, and the suspension is stable and has good dispersion. Chloride ion has little effect on the particle size distribution of barium sulfate. Sodium ion will significantly reduce the suspension of barium sulfate solution, so the interference of sodium ion should be avoided.
Keywords:nano barium sulfate; membrane dispersion microreactor; suspension; low-temperature aging
参考文献(References):
[1]杜鹏, 赵传山, 韩文佳, 等.纳米硫酸钡复合材料对改善纸张性能的研究[J].中国造纸, 2020, 39(12): 46-52.
[2]MIKHAILOV M M, YURYEV S A, LAPIN A N.Prospects for applying BaSO4 powders as pigments for spacecraft thermal control coatings[J].Acta Astronautica, 2019, 165: 191-194.
[3]何宇豪, 任子杰, 黄向阳, 等.重晶石防辐射原理与应用[J].矿产保护与利用, 2020, 40(6): 41-46.
[4]SADABA N, LARRANAGAA, ORPELLA-ACERET G,et al.Benefits of polydopamine as particle/matrix interface in polylactide/PD-BaSO4 scaffolds:15[J].International Journal of Molecular Sciences, 2020, 21(15): 5480.
[5]CHEN R, ZHOU J, XU B, et al.Preparation of TiO2-BaSO4 composite microparticles and their photocatalytic activity[J].Chemical Engineering Journal, 2013, 218: 24-31.
[6]邓南, 王玉军.核壳型硫酸钡-氧化钛复合纳米材料的制备[J].中国粉体技术, 2020, 26(1): 1-8.
[7]SUN S J, DING H, ZHOU H.Preparation of TiO2-coated barite composite pigments by the hydrophobic aggregation method and their structure and properties[J].Scientific Reports, 2017, 7(1): 10083.
[8]LI W, JI S, QIAN K, et al.Preparation and characterization of VO2-BaSO4 composite films with enhanced optical properties in thermochromic field[J].Ceramics International, 2015, 41(3,Part B): 5049-5056.
[9]LIU Z, JIN S, LV M, et al.Static-guided fabrication, characterization and antistatic property of BaSO4@sulfonated-graphene conductive fillers[J].Materials Research Express, 2019, 6(11): 1150e8.
[10]景晓娜.沉淀硫酸钡粒径影响因素的研究[J].盐科学与化工, 2018, 47(11): 19-21.
[11]FANG L, SUN Q, DUAN Y H, et al.Preparation of transparent BaSO4 nanodispersions by high-gravity reactive precipitation combined with surface modification for transparent X-ray shielding nanocomposite films[J].Frontiers of Chemical Science and Engineering, 2021, 15(4): 902-912.
[12]NIEMANN B, VEIT P, SUNDMACHER K.Nanoparticle precipitation in reverse microemulsions: particle formation dynamics and tailoring of particle size distributions[J].Langmuir, 2008, 24(8): 4320-4328.
[13]LUO G S, DU L, WANG YJ, et al.Controllable preparation of particles with microfluidics[J].Particuology, 2011, 9(6): 545-558.
[14]ZHANG T, WANG YJ, LUO GS, et al.Preparation of highly dispersed precipitated nanosilica in a membrane dispersion microreactor[J].Chemical Engineering Journal, 2014, 258: 327-333.
[15]HUANG C, WANG Y, LUO G.Preparation of highly dispersed and small-sized ZnO nanoparticles in a membrane dispersion microreactor and their photocatalytic degradation[J].Industrial and Engineering Chemistry Research, 2013, 52(16): 5683-5690.
[16]DU L, WANG Y J, LU Y C, et al.Process intensification of BaSO4 nanoparticle preparation with agitation of microbubbles[J].Powder Technology, 2013, 247: 60-68.
[17]刘玉敏, 刘悦.纳米硫酸钡悬浮液的分散性研究[J].无机盐工业, 2015, 47(4): 39-42.
[18]REN X D, YANG X Y, LI P, et al.Physicochemical properties of sodium succinate sulfate and effects on BaSO4 suspension[J].Journal of Dispersion Science and Technology, 2017, 39(1): 1-7.
[19]ADAIR J H, SUVACI E, SINDEL J.Surface and colloid chemistry[M].Oxford:Elsevier, 2001: 1-10.
[20]OHSHIMA H.Interaction of colloidal particles[M].Amsterdam: Elsevier, 2014: 1-28.