安 阳,袁思杰,吴 曼,王凌云,郭庆杰
(青岛科技大学 化工学院,山东 青岛 266042)
DOI:10.13732/j.issn.1008-5548.2022.01.010
收稿日期: 2021-04-19,修回日期:2021-10-12,在线出版时间:2021-12-01。
基金项目:国家自然科学基金联合基金重点项目,编号:U20A20124;国家重点研发计划项目,编号:2018YFB0605401;宁夏回族自治区重点研发计划(重大科技)项目,编号:2018BCE01002。
第一作者简介:安阳(1996—),男,硕士研究生,研究方向为煤炭清洁利用。E-mail:ayaaa@126.com。
通信作者简介:郭庆杰(1967—),男,教授,博士,博士生导师,研究方向为煤炭清洁利用。E-mail:qj_guo@yahoo.com。
摘要:为促进铁基载氧体的深度还原提高氢气产量,通过优化反应过程形成强化煤化学链制氢(强化煤CLHG)工艺。采用浸渍法制备铁基载氧体;以梅花井烟煤为原料,在固定床上研究煤与铁基载氧体的质量比对强化煤CLHG的影响;对比了三反应器煤CLHG和强化煤CLHG的制氢过程,对不同阶段的铁基载氧体进行XRD表征;对比二反应器、三反应器以及强化煤CLHG在6次循环实验中的碳转化率和氢气产量。结果表明:当煤与载氧体质量比为1:15时,氢气产量最高达1.74 L/g;强化煤CLHG中的铁基载氧体更多地被还原为FeO或Fe,还原程度加深,同时还原阶段的残炭在蒸汽氧化阶段进一步反应,使得氢气产量比三反应器煤CLHG的高18.4%;在6次循环实验中,强化煤CLHG的碳转化率与三反应器煤CLHG的相差不大,远高于二反应器煤CLHG的;强化煤CLHG的氢气产量始终高于二反应器煤CLHG和三反应器煤CLHG的;强化煤CLHG的单次最高氢气产量为1.76 L/g,循环累计氢气产量为9.54 L。强化煤CLHG缩短制氢时间,制氢能力更优异。
关键词:铁基载氧体;强化煤;化学链制氢;二反应器;三反应器
Abstract:In order to promote the deep reduction of Fe-based oxygen carrier and increase the yield of hydrogen, an enhanced coal chemical looping hydrogen generation(enhanced coal CLHG)was proposed by optimizing the reaction process. Fe-based oxygen carrier was prepared by impregnation method. Using Meihuajing bituminous coal as raw material, the effect of the mass ratio of coal and Fe-based oxygen carrier on the enhanced coal CLHG was studied on a fixed bed.The hydrogen generation of two-reactor, three-reactor and enhanced chemical looping hydrogen generation processes in six cycles of experiments were compared. The results show that when the mass ratio of coal to oxygen carrier is 1∶15, the maximum hydrogen yield is 1.74 L/g.The Fe-based oxygen carrier in the enhanced coal CLHG is more reduced to FeO or Fe, and the degree of reduction is deepened. At the same time, the carbon residue in the reduction stage is further reacted in the steam oxidation stage, making the hydrogen production 18.4% higher than that of the three-reactor coal CLHG. In the 6-cycle experiment, the carbon conversion rate of the enhanced coal CLHG is not much different from that of the three-reactor coal CLHG, which is much higher than that of the two-reactor coal CLHG.The hydrogen production of the enhanced coal CLHG is always higher than that of the two-reactor coal CLHG and the three-reactor coal CLHG. The maximum hydrogen output in a single cycle of the enhanced coal CLHG is 1.76 L/g, and the cumulative hydrogen output of the cycle is 9.54 L.The enhanced coal CLHG shortens the hydrogen production time, and the hydrogen production capacity is more excellent.
Keywords:Fe-based oxygen carrier; enhanced coal; chemical looping hydrogen generation; two-reactor; three-reactor
参考文献(References):
[1]张宁, 冯靖书, 杨倩倩, 等.一维CdS-Co9S8复合材料的制备及光催化产氢性能[J].中国粉体技术, 2021, 27(3): 73-79.
[2]LI G, LIU F, LIU T, et al.Life cycle assessment of coal direct chemical looping hydrogen generation with Fe2O3 oxygen carrier[J].Journal of Cleaner Production, 2019, 239: 118118.
[3]陈思晗, 张珂, 常丽萍, 等.传统和新型制氢方法概述[J].天然气化工(C1化学与化工), 2019, 44(2): 122-127.
[4]杨贺勤, 刘志成, 谢在库.绿色化工技术研究新进展[J].化工进展, 2016, 35(6): 1575-1586.
[5]CUI D, LI M, QIU Y, et al.Improved hydrogen production with 100% fuel conversion through the redox cycle of ZnFeAlOx oxygen carrier in chemical looping scheme[J].Chemical Engineering Journal, 2020, 400: 125769.
[6]任英杰, 赵永红, 张广良.煅烧工艺对活化煤矸石中残余碳的影响[J].中国粉体技术, 2016, 22(2): 63-67.
[7]张毅, 朱建国, 吕清刚, 等.烟煤循环流化床预热特性实验[J].中国粉体技术, 2019, 25(6): 7-11.
[8]LIU T, YU Z, LI G, et al.Performance of potassium-modified Fe2O3/Al2O3 oxygen carrier in coal-direct chemical looping hydrogen generation[J].International Journal of Hydrogen Energy, 2018, 43(42): 19384-19395.
[9]张云鹏, 杨勤勤, 刘永卓, 等.助剂修饰磷石膏-膨润土载氧体煤化学链燃烧反应特性[J].中国粉体技术, 2016, 22(2): 41-47.
[10]杨勤勤, 张云鹏, 刘永卓, 等.CaSO4-CuO-Ben载氧体煤化学链燃烧反应特性[J].中国粉体技术, 2017, 23(1): 36-41.
[11]FENG Y C, WANG N N, GUO X.Reaction mechanism of methane conversion over Ca2Fe2O5 oxygen carrier in chemical looping hydrogen production[J].Fuel, 2021, 290: 120094.
[12]蒋景周.基于化学链燃烧原理的制氢系统设计与实验[D].北京: 华北电力大学(北京), 2011.
[13]LIU C L, CHEN D, ASHOK J, et al.Chemical looping steam reforming of bio-oil for hydrogen-rich syngas production:effect of doping on LaNi0.8Fe0.2O3 perovskite[J].International Journal of Hydrogen Energy, 2020, 45(41): 21123-21137.
[14]WEI G Q, HUANG J, FAN YY, et al.Chemical looping reforming of biomass based pyrolysis gas coupling with chemical looping hydrogen by using Fe/Ni/Al oxygen carriers derived from LDH precursors[J].Energy Conversion and Management, 2019, 179: 304-313.
[15]郑浩, 孙朝, 曾亮.化学链技术在低碳制氢领域的研究进展[J].中南大学学报(自然科学版), 2021, 52(1): 313-329.
[16]阳绍军, 徐祥, 田文栋.基于化学链燃烧的吸收剂引导的焦炉煤气水蒸气重整制氢过程模拟[J].化工学报, 2007(9): 2363-2368.
[17]LIU T, YU Z L, MEI Y G, et al.Potassium migration and transformation during the deep reduction of oxygen carrier(OC)by char in coal-direct chemical looping hydrogen generation using potassium-modified Fe2O3/Al2O3 OC[J].Fuel, 2019, 256: 115883.
[18]吴志强, 张博, 杨伯伦.生物质化学链转化技术研究进展[J].化工学报, 2019, 70(8): 2835-2853.
[19]XIONG Y W, ZHAO J, ZHENG Z Q, et al.Modified CeO2 as active support for iron oxides to enhance chemical looping hydrogen generation performance[J].International Journal of Hydrogen Energy, 2020, 45(58): 32995-33006.
[20]YAN J, SUN R, SHEN L, et al.Hydrogen-rich syngas production with tar elimination via biomass chemical looping gasification(BCLG)using BaFe2O4/Al2O3 as oxygen carrier[J].Chemical Engineering Journal, 2020, 387: 124107.
[21]孙小燕, 向文国, 田文栋, 等.基于Fe3O4的化学链制氢动力学特性[J].燃烧科学与技术, 2011, 17(6): 534-540.
[22]CHIESA P, LOZZA G, MALANDRINO A, et al.Three-reactors chemical looping process for hydrogen production[J].International Journal of Hydrogen Energy, 2008, 33(9): 2233-2245.
[23]ZHU M, SONG Y H, CHEN S Y, et al.Chemical looping dry reforming of methane with hydrogen generation on Fe2O3/Al2O3 oxygen carrier[J].Chemical Engineering Journal, 2019, 368: 812-823.
[24]朱珉, 陈时熠, 马士伟, 等.Fe2O3/Al2O3氧载体化学链制氢联合甲烷干重整制备氢气和合成气[J].工程热物理学报, 2019, 40(10): 2447-2453.
[25]YU Z L, LIU T, LI C Y, et al.Coal direct chemical looping hydrogen production with K-Fe-Al composite oxygen carrier[J].International Journal of Greenhouse Gas Control, 2018, 75: 24-31.