ISSN 1008-5548

CN 37-1316/TU

2022年28卷  第1期
<返回第1期

基于成熟度的二灰稳定碎石抗压强度预测方法

Prediction method of compressive strength of lime fly ash stabilized macadam based on maturity

赵宏良1,马士宾1,杨志伟2,梁 栋1,汲港升1

(1. 河北工业大学 土木与交通学院,天津 300401;2. 天津市亨益晟泰筑路材料科技有限公司,天津 300111)


DOI:10.13732/j.issn.1008-5548.2022.01.009

收稿日期: 2021-05-08,修回日期:2021-11-02,在线出版时间:2021-12-02。

基金项目:国家自然科学基金项目,编号:51978236;天津市交通运输科技发展计划项目,编号:2019-08。

第一作者简介:赵宏良(1995—),男,硕士研究生,研究方向为路基路面的材料与施工。E-mail:z185224561212@163.com。

通信作者简介:马士宾(1973—),男,教授,博士,硕士生导师,研究方向为路基路面材料以及桥梁施工。E-mail:marotolo@hebut.edu.cn。


摘要:为给沥青路面施工方案提供决策依据,在不同养护温度条件下、养护龄期分别为7、 14、 28、 42、 60、 90 d时,于实验室内测量4种二灰稳定碎石试件的抗压强度;结合活化能关系和度时积方程,分别构建基于成熟度的二灰稳定碎石抗压强度的3种预测模型;通过数据回归法和电子扫描显微镜结果对预测模型进行修正;将3种模型的预测值与实测值进行对比,验证预测模型的准确性。结果表明:二灰稳定碎石试件的抗压强度与龄期、温度均正相关,养护温度的影响大于养护龄期和二灰质量比的影响;活化能成熟度方程可以将不同温度下的实际养护龄期换算为标准温度下的等效龄期,该预测方便但预测结果误差较大。在恒定温度条件下,度时积成熟度方法在预测早期抗压强度时更接近实际值,但在龄期为14 d以后预测值较实际值略小。在变温度养护条件下,需要将近似基准温度设置为7℃,度时积成熟度方法预测二灰稳定碎石试件抗压强度不受二灰质量比、养护温度等因素干扰,具有更高的实用性。

关键词:成熟度;二灰稳定碎石;抗压强度;养护龄期;养护温度

Abstract:In order to provide decision-making basis for the construction plan of asphalt pavement, under different curing temperature conditions and the curing ages were 7, 14, 28, 42, 60, 90 d respectively, compressive strength of 4 kinds of lime fly ash stabilized macadam specimens were measured in the laboratory. Combining the activation energy relationship and the Nurse-Saul equation, 3 prediction models of the compressive strength of lime fly ash stabilized macadam specimens based on maturity were constructed respectively. Based on the data regression method and the results of scanning electron microscope, the prediction model was revised. The predicted values of the 3 models were compared with the measured values to verify the accuracy of the predicted models. The results show that the compressive strength of the lime fly ash stabilized macadam specimen is positively correlated with age and temperature. The effect of curing temperature is greater than the effect of curing age or the mass proportions of lime fly ash. The activation energy maturity equation can convert the actual curing ages at different temperatures into the equivalent ages at the standard temperature. It is convenient to predict but the prediction result has a large error. Under constant temperature conditions, the Nurse-Saul equation maturity method is closer to the actual value when predicting the early compressive strength, but the predicted valuesare slightly smaller than the actual values after the age of 14 d. Under variable temperature curing conditions, the approximate reference temperature needs to be set to 7 ℃. The Nurse-Saul equation maturity method predicts the compressive strength of the lime fly ash stabilized macadam specimen without interference from the lime fly ash massproportions, curing temperaturesor other factors, which has higher practicability.

Keywords:maturity; lime fly ash stabilized macadam; compressive strength; curing age; curing temperature


参考文献(References):

[1]LIU S T, LI Z Z, LI Y Y, et al.Strength properties of bayer red mud stabilized by lime fly ash using orthogonal experiments[J].Construction and Building Materials, 2018,166: 554-563.

[2]LIAO F X, XIAO F, CHEN Z D, et al.the Influence of different subbase materials on the crack of cement stabilized macadam base during construction[J].Advanced Materials Research, 2012,591/592/593: 955-959.

[3]CONSOLI N C, SALDANHA R B, MALLMANN J E C, et al.Enhancement of strength of coal fly ash-carbide lime blends through chemical and mechanical activation[J].Construction and Building Materials, 2017, 157: 65-74.

[4]XUE J S, JIANG Y J.Analysis on the fatigue properties of vertical vibration compacted lime fly ash-stabilized macadam[J].Construction and Building Materials, 2017,155: 531-541.

[5]DUAN K R, GAO Y L, YAO H, et al.Comparison of performances of early aged pre-vibrated cement-stabilized macadam formed by different compactions[J].Construction and Building Materials, 2020,239: 117682.

[6]胡裕新, 郑慧良.现浇混凝土成熟度——强度曲线方程的应用[J].建筑技术, 2014, 45(1): 23-26.

[7]胡立志, 刘士清, 宋正林, 等.粉煤灰混凝土抗压强度和成熟度之间的规律研究[J].混凝土, 2014(8): 61-63, 73.

[8]代金鹏, 王起才, 屈伸, 等.基于成熟度理论的低温养护混凝土强度预测模型[J].材料科学与工程学报, 2018, 36(2): 263-267.

[9]ANDAVAN S, PAGADALA K V.Experimental study on addition of lime and fly ash for the soil stabilization[C].Materials Today: Proceedings, 2020, 22: 1065-1069.

[10]ASSOGBA O C, TAN Y Q, ZHOU X Y, et al.Numerical investigation of the mechanical response of semi-rigid base asphalt pavement under traffic load and nonlinear temperature gradient effect[J].Construction and Building Materials, 2020(235): 117406.

[11]交通运输部公路科学研究院.JTG/T F20—2015:公路路面基层施工技术细则[S].北京:人民交通出版社,2015.

[12]交通运输部公路科学研究院.JTG E51—2009:公路工程无机结合料稳定材料试验规程[S].北京:人民交通出版社,2009.

[13]DENG C Q, JIANG Y J, LIN H W, et al.Mechanical-strength-growth law and predictive model for cement-stabilized macadam[J].Construction and Building Materials, 2019(215): 582-594.

[14]BENTZ D P.Activation energies of high-volume fly ash ternary blends: hydration and setting[J].Cement and Concrete Composites, 2014(53): 214-223.

[15]UPADHYAYA S, GOULIAS D, OBLA K.Maturity-based field strength predictions of sustainable concrete using high-volume fly ash as supplementary cementitious material[J].Journal of Materials in Civil Engineering, 2015, 27(5): 04014165.

[16]YAHIA A A.The maturity method: modifications to improve estimation of concrete strength at later ages[J].Construction and Building Materials, 2006, 20: 893-900.

[17]SUN B C, NOGUCHI T, CAI G C, et al.Effect of temperature and relative humidity on the development of the compressive strength of surface-layer cement mortar[J].Construction and Building Materials, 2021,281: 122626.