ISSN 1008-5548

CN 37-1316/TU

2022年28卷  第1期
<返回第1期

机械粉碎法制备β-SiC纳米粉体及其特性分析

Preparation and characterization of β-SiC nano-powders by mechanical crushing method

邓丽荣1a,王晓刚1a,2,3,华小虎1a,陆树河1a,3,王嘉博1b,王行博2


DOI:10.13732/j.issn.1008-5548.2022.01.007

收稿日期: 2021-05-07,修回日期:2021-10-12,在线出版时间:2021-12-01。

基金项目:国家自然科学基金项目,编号:51602254。

第一作者简介:邓丽荣(1984—),女,博士研究生,研究方向为碳化硅粉体制备与应用。E-mail:denglirong@xust.edu.cn。

通信作者简介:王晓刚(1959—),男,二级教授,博士,博士生导师,研究方向为硅镁碳材料制备与应用。E-mail:1469111843@qq.com。


摘要:为获得批量制备技术,采用机械粉碎法制备高纯β-SiC纳米粉体;通过实验研究不同粒径的β-SiC纳米粉体的粒度分布、球形度变化规律、微观结构和分散稳定性等特性。结果表明:机械粉碎法适合制备粒径小于200 nm的β-SiC纳米产品,产品粒度最小可达30 nm;砂磨时间越长,产物粒度越细,粒度分布越窄,产品的球形度越好;β-SiC衍射峰强度随粒径的减小而减小,峰形宽化明显,晶格结构出现由单晶向多晶的转变,并于颗粒外层诱发厚度约5 nm的无定形二氧化硅氧化层;纳米β-SiC浆料在pH值为2~11时没有出现等电点,在中性和碱性条件下分散稳定性良好。

关键词:机械粉碎法;β-SiC纳米粉体;粉体特性

Abstract:In order to obtain batch preparation technology, high purity β-SiC nano-powder were prepared by mechanical crushing method. The particle size distribution, sphericity, microstructure and dispersion stability of β-SiC nano-powders with different particle sizes were investigated by experiments. The results show that mechanical crushing method is suitable for preparing β-SiC nanoproducts which particle sizeis less than 200 nm and the minimum particle size of product can reach 30 nm. The longer the grinding time, the finer the particle size of product is. The narrower the particle size distribution, the better the sphericity of the product is. The diffraction peak intensity of β-SiC decreases with the decreasing of particle size, the peak shape becomes wider and the lattice structure changes from single crystal to polycrystal. Amorphous silica oxide layer with a thickness of about 5 nm is induced on the outer layer of particles. β-SiC slurry doesnot have isoelectric point at pH value from 2 to 11 and has good dispersion stability under neutral and alkaline conditions.

Keywords:mechanical crushing; β-SiC nano-powders; powder characterization


参考文献(References):

[1]WU R B, ZHOU K, CHEE Y Y, et al.Recent progress in synthesis, properties and potential applications of SiC nanomaterials[J].Progress in Materials Science, 2015, 72: 1-60.

[2]LI Y, CHEN L, HONG L, et al.Fabrication of porous silicon carbide ceramics at low temperature using aluminum dihydrogen phosphate as binder[J].Journal of Alloys and Compounds, 2019, 785: 838-845.

[3]邓丽荣, 王晓刚, 陆树河, 等.多热源真空合成高纯度、高密度、大粒径3C-SiC微粉[J].中国粉体技术, 2020, 26(2): 29-34.

[4]SHCHERBAN N D.Review on synthesis, structure, physical and chemical properties and functional characteristics of porous silicon carbide[J].Journal of Industrial and Engineering Chemistry, 2017, 50: 15-28.

[5]TEBYANI S F, DEHGHANI K.Effects of SiC nanopowders on the mechanical properties and microstructure of interstitial free steel joined via friction stir spot welding[J].Materials and Design, 2016, 90: 660-668.

[6]SALECHA M, PASWAN K, CHATTOPADHYAYA S.Effect of SiC micro and nanopowder in the electrical discharge machining process[J].Materials Today:Proceedings, 2020, 28(4): 2400-2404.

[7]MA R Q, SHI J H, LIN W X, et al.Synthesis and sintering of nanocrystalline SiC ceramic powders[J].Materials Chemistry and Physics, 2020, 253: 123445.

[8]SEDOV V S, MARTYANOV A K, KHOMICH A A, et al.Co-deposition of diamond and β-SiC by microwave plasma CVD in H2-CH4-SiH4 gas mixtures[J].Diamond and Related Materials, 2019, 98: 1-7.

[9]CHU A M, QIN M L, LI D, et al.Preparation of sic nanopowder using low-temperature combustion synthesized precursor[J].Materials Chemistry and Physics, 2014, 144(3):560-567.

[10]HAO J Y, WANG Y Y, GONG C W, et al.Novel synthesis of high surface area sic by carbothermal reduction process[J].Materials Research Innovations, 2015, 19(2): 155-159.

[11]ZHAN H, ZHANG N, WU D, et al.Controlled synthesis of β-SiC with a novel microwave sintering method[J].Materials Letters, 2019, 255: 126586.

[12]GUBERNAT A, PICHOR W, LACH R, et al.Low-temperature synthesis of silicon carbide powder using shungite[J].Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2017, 56: 39-46.

[13]张广强, 许大鹏, 苏文辉.高能机械球磨法制备高质量纳米β-SiC粉体[J].超硬材料工程, 2009, 21(2): 16-18.

[14]马丽莉, 铁生年, 汪长安.碳化硅粉体湿法研磨中机械力化学效应研究[J].稀有金属材料与工程, 2013, 42(S1): 388-391.

[15]SHIMODA K, KOYANAGI T.Surface properties and dispersion behaviors of SiC nanopowders[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 463: 93-100.

[16]COUPÉA, MASKROT H, BUET E, et al.Dispersion behaviour of laser-synthesized silicon carbide nanopowders in ethanol for electrophoretic infiltration[J].Journal of the European Ceramic Society, 2012, 32(14): 3837-3850.