ISSN 1008-5548

CN 37-1316/TU

2022年28卷  第1期
<返回第1期

Ag-MMOFs复合材料的制备及其对硝基苯酚的降解作用 

Preparation of Ag-MMOFs composite and its degradation properties on nitrophenol

顾傲天,谭伟洋,李智颖,付 豪,王 鹏,龚春慧,杨 毅

(南京理工大学 环境与生物工程学院;江苏省化工污染控制与资源化重点实验室,江苏 南京 210094)


DOI:10.13732/j.issn.1008-5548.2022.01.002

收稿日期: 2021-05-25,修回日期:2021-06-23,在线出版时间:2021-11-16。

基金项目:国家自然科学基金项目,编号:51908240;中央高校基本科研业务费专项资金项目,编号:30921013110;江苏省研究生科研与实践创新计划项目,编号:KYCX20_0332,SJCX20_0114;江苏省凹土资源利用重点实验室开放课题项目:编号 HPK202001。

第一作者简介:顾傲天(1995—),男,博士研究生,研究方向为环境功能材料。E-mail:490188489@qq.com。

通信作者简介:杨毅(1973—),男,研究员,博士,博士生导师,研究方向为环境功能材料。E-mail:yangyi@njust.edu.cn。


摘要:采用双溶剂法制备Ag-ZIF-8(Zn-Co)多金属MOFs材料,并将其用于对硝基苯酚、邻硝基苯酚和对硝基苯胺等污染物的催化还原;利用扫描电子显微镜(SEM)、 X射线衍射仪(XRD)、透射电镜(TEM)对制备的材料进行表征。结果表明:Ag-ZIF-8(Zn-Co)在催化降解3种污染物方面表现出优异的催化活性;Ag-ZIF-8(Zn-Co)催化降解对硝基苯酚反应的表观速率常数和转换频率分别为1.080×10-4 s-1和2.056 min-1,并在多次重复使用过程中保持较高的催化性能;与单金属复合材料Ag-ZIF-8和Ag-ZIF-67相比,Ag-ZIF-8 (Zn-Co)的催化活性显着提高,主要原因是Ag-ZIF-8(Zn-Co)具有高比表面积,Zn和Co双金属的协同作用,以及孔道对银纳米颗粒的限制等。

关键词:双溶剂法;沸石咪唑酯骨架;硝基苯酚;金属有机骨架;高效催化

Abstract:Ag-ZIF-8(Zn-CO) multi metal MOFs was prepared by double-solvent method and applied to the catalytic reduction pollutants of p-nitrophenol, o-nitrophenol and p-nitroaniline. The obtained samples were fully characterized by scanning electron microscope(SEM), X-ray diffractometer(XRD) and transmission electron microscope(TEM). The results show that Ag-ZIF-8(Zn-Co) shows excellent catalytic activity in the catalytic degradation of three pollutants. The apparent rate constant and conversion frequency of Ag-ZIF-8(Zn-Co) catalytic degradation of p-nitrophenol are 1.080×10-3 s-1 and 2.056 min-1, respectively, and high catalytic performance is maintained during repeated use. Compared with Ag-ZIF-8 and Ag-ZIF-67, the catalytic activity of Ag-ZIF-8(Zn-Co) is significantly improved, which is mainly due to the high specific surface area of Ag-ZIF-8(Zn-Co), Zn and Co bimetallic synergy, and encapsulation of silver nanoparticles by pores.

Keywords:double-solvent method; zeolitic imidazolate framework; nitrophenol; metal organic framework; efficient catalysis


参考文献(References):

[1]SHEN X, ZHU L, WANG N, et al.Selective photocatalytic degradation of nitrobenzene facilitated by molecular imprinting with a transition state analog[J].Catalysis Today, 2014, 225: 164-170.

[2]WU X Y, QI H X, NING J J, et al.One silver(I)/tetraphosphine coordination polymer showing good catalytic performance in the photodegradation of nitroaromatics in aqueous solution[J].Applied Catalysis B: Environmental, 2015, 168/169: 98-104.

[3]DIN M I, KHALID R, HUSSAIN Z, et al.Nanocatalytic assemblies for catalytic reduction of nitrophenols: a critical review[J].Critical Reviews In Analytical Chemistry, 2020, 50(4): 322-338.

[4]PRADHAN N, PAL A and PAL T Silver nanoparticle catalyzed reduction of aromatic nitro compounds[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 196(2): 247-257.

[5]AIJAZ A, KARKAMKAR A, CHOI Y J, et al.Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach[J].Journal of the American Chemical Society, 2012, 134(34): 13926-13929.

[6]JIANG H L, LIU B, AKITA T, et al.Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal organic framework[J].Journal of the American Chemical Society, 2009,131(32): 11302-11303.

[7]LU G, LI S, GUO Z, et al.Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation[J].Nature Chemistry, 2012, 4: 310.

[8]GARCíA BLANCO A A, VALLONE A F, GIL A, et al.A comparative study of various microporous materials to store hydrogen by physical adsorption[J].International Journal of Hydrogen Energy, 2012, 37(19): 14870-14880.

[9]NANDI S, DE LUNA P, DAFF T D, et al.A single-ligand ultra-microporous MOF for precombustion CO2 capture and hydrogen purification[J].Science Advances, 2015, 1(11): e1500421.

[10]SOMAYAJULU RALLAPALLI P B, RAJ M C, PATIL D V, et al.Activated carbon@MIL-101(Cr): a potential metal-organic framework composite material for hydrogen storage[J].International Journal of Energy Research, 2013, 37(7): 746-753.

[11]ZHOU H-C, LONG J R, YAGHI O M.Introduction to metal-organic frameworks[J].Chemical Reviews, 2012, 112(2): 673-674.

[12]LI Y W, HE K H, BU X H.Bottom-up assembly of a porous MOF based on nanosized nonanuclear zinc precursors for highly selective gas adsorption[J].Journal of Materials Chemistry A, 2013, 1(13): 4186-4189.

[13]LALONDE M, BURY W, KARAGIARIDI O, et al.Transmetalation: routes to metal exchange within metal-organic frameworks[J].Journal of Materials Chemistry A, 2013, 1(18): 5453-5468.

[14]LI T, SULLIVAN J E, ROSI N L.Design and preparation of a core-shell metal-organic framework for selective CO2 capture[J].Journal of the American Chemical Society, 2013, 135(27): 9984-9987.

[15]REN J, MUSYOKA N M, LANGMI H W, et al.Fabrication of core-shell MIL-101(Cr)@UiO-66(Zr)nanocrystals for hydrogen storage[J].International Journal of Hydrogen Energy, 2014, 39(27): 14912-14917.

[16]KAUR G, RAI R K, TYAGI D, et al.Room-temperature synthesis of bimetallic Co-Zn based zeolitic imidazolate frameworks in water for enhanced CO2 and H2 uptakes[J].Journal of Materials Chemistry A, 2016, 4(39): 14932-14938.

[17]PANCHARIYA D K, RAI R K, ANIL KUMAR E, et al.Core-shell zeolitic imidazolate frameworks for enhanced hydrogen storage[J].ACS Omega, 2018, 3(1): 167-175.

[18]TANG J, SALUNKHE R R, LIU J, et al.Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon[J].Journal of the American Chemical Society, 2015, 137(4): 1572-1580.

[19]YANG J, ZHANG F, LU H, et al.Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene[J].Angewandte Chemie International Edition, 2015, 54(37): 10889-10893.

[20]PAN Y, SUN K, LIU S, et al.Core-Shell ZIF-8@ZIF-67-Derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting[J].Journal of the American Chemical Society, 2018, 140(7): 2610-2618.

[21]ZHANG J, ZHANG T, XIAO K, et al.Novel and facile strategy for controllable synthesis of multilayered core-shell zeolitic imidazolate frameworks[J].Crystal Growth and Design, 2016, 16(11): 6494-6498.

[22]ZHOU K, MOUSAVI B, LUO Z, et al.Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs.ZIF-8 and ZIF-67[J].Journal of Materials Chemistry A, 2017, 5(3): 952-957.

[23]JIANG H L, AKITA T, ISHIDA T, et al.Synergistic catalysis of Au@Ag core shell nanoparticles stabilized on metal organic framework[J].Journal of the American Chemical Society, 2011, 133(5): 1304-1306.

[24]ZHANG Z, SHAO C, SUN Y, et al.Tubular nanocomposite catalysts based on size-controlled and highly dispersed silver nanoparticles assembled on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol[J].Journal of Materials Chemistry, 2012, 22(4): 1387-1395.

[25]WANG R L, LI D P, WANG L J, et al.The preparation of new covalent organic framework embedded with silver nanoparticles and its applications in degradation of organic pollutants from waste water[J].Dalton Transactions, 2019, 48(3): 1051-1059.

[26]MAO H, JI C, LIU M, et al.Enhanced catalytic activity of Ag nanoparticles supported on polyacrylamide/polypyrrole/graphene oxide nanosheets for the reduction of 4-nitrophenol[J].Applied Surface Science, 2018, 434: 522-533.