ISSN 1008-5548

CN 37-1316/TU

2022年28卷  第2期
<返回第2期

核壳结构Ag@Ni粉体的制备与表征

Preparation and characterization of core-shell Ag@Ni powders


何乃如1,方子文1,贾均红1,刘 宁2,杨 杰1

(1. 陕西科技大学 机电工程学院,陕西 西安 710021;2. 西安航天复合材料研究所,陕西 西安 710021)


DOI:10.13732/j.issn.1008-5548.2022.02.012

收稿日期: 2021-09-02,修回日期:2021-09-12,在线出版时间:2022-01-30 14:19。

基金项目:国家自然科学基金项目,编号 :51905325;中国博士后科学基金项目,编号:2019M653525。

第一作者简介:何乃如(1989—),男,博士,副教授,硕士生导师,研究方向为固体润滑材料的设计、制备及性能研究。E-mail:henairu@sust.edu.cn。

通信作者简介:贾均红(1974—),男,博士,教授,研究方向为摩擦学及表面工程。E-mail:jhjiasust@163.com。


摘要: 利用次亚磷酸钠作为还原剂,硫酸镍作为主盐,柠檬酸钠作为络合剂,通过化学镀法制备核壳结构Ag@Ni粉体;采用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线能量色散谱仪(EDS)、X射线衍射(XRD)技术对核壳结构Ag@Ni粉体的形貌、结构及化学组分进行表征分析;通过设计单因素实验,并以化学镀液浓度为单因素,硫酸镍、次亚磷酸钠、柠檬酸钠浓度为影响因子,研究化学镀液浓度对核壳结构Ag@Ni粉体镀层厚度的影响。结果表明:核壳结构Ag@Ni粉体镀层具有良好的包覆性和完整性;核壳结构Ag@Ni粉体制备过程中Ag的形态结构没有发生变化,镀Ni层以单质Ni存在,且主要沿Ni的(111)晶面生长;随着硫酸镍、次亚磷酸钠、柠檬酸钠浓度的增大,核壳结构Ag@Ni粉体镀层厚度显著增加,次亚磷酸钠的浓度对镀层厚度增长速率的影响最显著,柠檬酸钠浓度的影响最小。

关键词: 核壳结构;银;镍;化学镀

Abstract:Core-shell Ag@Ni powders were prepared by using chemical plating method taking sodium sodium hypophosphite,nickel sulfate,and sodium citrate as reducing agent,principal salt,and complexation agent,respectively.Morphology,structures and chemical composition of core-shell Ag@Ni powders were characterized by optical microscopy (OM),scanning electron microscope (SEM),energy dispersive spectrometer (EDS),and X-ray diffraction (XRD).The influence of the chemical plating solution concentration on plated layer thickness of the core-shell Ag@Ni powders were explored by designing a single factor experiment,taking the concentration of the chemical plating solution as a single factor,and the concentration of nickel sulfate,sodium hypophosphite,and sodium citrate as impact factors.The results show that core-shell Ag@Ni powders have good inclusion and integrity.The morphological structure of Ag do not change during the preparation of core-shell Ag@Ni powders.The plated Ni layer is present in pure element Ni and grows predominantly along the (111)crystal surface of Ni.The plated layer thickness of the core-shell Ag@Ni powders increase significantly,with increasing of the concentration of nickel sulfate,sodium hypophosphite,and sodium citrate.The concentration of the reducing agent sodium hypophosphite has the most significant effect on the growth rate of the plated layer thickness and the concentration of sodium citrate has the least effect.

Keywords:core-shell structure;Ag;Ni;chemical plating


参考文献(References):

[1]程志鹏,杨毅,刘小娣,等.核壳结构纳米双金属粒子的制备进展[J].现代化工,2006(7):18-21.

[2]崔继方,崔文权.银基核壳型纳米复合光催化材料的研究进展[J].陶瓷,2019(6):9-14.

[3]黄惠华,孙爱华,储成义,等.棒状SiO2-TiO2核壳结构粒子的制备和表征[J].中国粉体技术,2013,19(1):45-48.

[4]冉龙国,焦丕玉.核壳结构银纳米复合材料制备及应用概述[J].船电技术,2018,38(5):44-46.

[5]赵素玲,李薇馨.SiO2@Ag核壳粒子表面形貌及壳层厚度影响因素的研究[J].中国粉体技术,2011,17(6):14-19.

[6]卜军燕,刘欣,覃超,等.Ag@Cu2O核壳纳米晶体结构光催化性能的研究[J].科学技术创新,2021(10):5-9.

[7]迟聪聪,张萌,夏亮,等.抗氧化Ag@Cu核壳结构的制备及其性能[J].陕西科技大学学报,2021,39(3):81-87.

[8]董楠,曹可,郑丹.Ag@C核壳纳米结构的制备及其对双酚A的敏感特性[J].微纳电子技术,2020,57(9):702-707.

[9]胡余宗,孙宾.Ag@Cu2O核壳结构杂化材料的制备及抗菌性能研究[J].山东化工,2021,50(6):50-52.

[10]刘建波,尚永辉,许锦琼,等.Ag@Co2O3核壳结构纳米材料的合成及其电化学传感应用[J].当代化工,2020,49(7):1294-1297.

[11]马翠英,杜慧玲,刘佳,等.核-壳结构BaTiO3@Ag复合陶瓷的介电性能及阻抗谱[J].硅酸盐学报,2020,48(9):1405-1413.

[12]孙彦红,张敏,杨建军.双金属核壳结构负载型Au@Ag/TiO2催化剂的制备及表征[J].无机化学学报,2009,25(11):1965-1970.

[13]文怀兴,黄琰,何乃如.Al2O3-Ag@Ni-Mo自润滑材料宽温域多循环摩擦学性能研究[J].陕西科技大学学报,2021,39(2):133-138.

[14]郑金桥,梁飞,戴金航,等.核壳填料Ag@TiO2对PTFE基复合材料微波介电性能的调控特性研究[J].电子元件与材料,2021,40(5):460-467.

[15]张旭海,巫亮,曾宇乔,等.不同掺Ag含量下高温(800 ℃)沉积CrN/Ag涂层的组织结构及其性能[J].功能材料,2013,44(13):1908-1911.

[16]付东兴,杨中元,张晓囡,等.Ag含量对WC-12Co/Ag涂层高温摩擦性能的影响[J].热喷涂技术,2014,6(4):13-17.

[17]ZHANG T,LAN H,HUANG C,et al.Preparation and characterizations of nickel-based composite coatings with self-lubricating property at elevated temperatures[J].Surface &Coatings Technology,2016,294:21-29.

[18]何鹏飞,王海斗,马国政,等.含银硬质涂层高温摩擦学性能的研究进展[J].中国有色金属学报,2015,25(11):2962-2974.

[19]陈明月,董丽红,韩明娟,等.聚苯乙烯/银核/壳复合微球的制备及其表征[J].分子科学学报,2014,30(5):383-389.

[20]GAO D,LIU W,XU Y,et al.Core-shell Ag@Ni cocatalyst on the TiO2 photocatalyst:one-step photoinduced deposition and its improved H2-evolution activity[J].Applied Catalysis:B:Environmental,2020,260:118190-118198.

[21]VYKOUKAL V,ZELENKA F,BURSIK J,et al.Thermal properties of Ag@Ni core-shell nanoparticles[J].Calphad,2020,69:101741.

[22]PING H,CHEN Y,GUO H,et al.A facile solution approach for the preparation of Ag@Ni core-shell nanocubes[J].Materials Letters,2014,116:239-342.