ISSN 1008-5548

CN 37-1316/TU

2022年28卷  第3期
<返回第3期

3D石墨烯的简易制备及其在太阳能界面蒸发中的应用

Simple preparation of 3D graphene and its application in solar interface evaporation

田 杰1,2,孙岳玲2,毋 伟3

(1.扬州大学 化学化工学院,江苏 扬州 225009;2.扬州工业职业技术学院 化学工程学院,江苏 扬州 225000;3.北京化工大学 化学工程学院,北京 100029)


DOI:10.13732/j.issn.1008-5548.2022.03.014

收稿日期: 2021-11-23, 修回日期:2022-03-27,在线出版时间:2022-04-21。

基金项目:国家自然科学基金项目,编号B061203。

第一作者简介:田杰(1992—), 女, 讲师, 博士, 研究方向为功能性纳米材料。E-mail: 646300529@qq.com。

通信作者简介:毋伟(1966—), 男, 教授, 博士, 研究方向为功能性纳米材料的制备与应用研究。E-mail: wuwei@mail.buct.edu.cn。


摘要:以三聚氰胺泡沫(MF)为3D载体,石墨烯-氧化石墨烯(G-GO)复合纳米片为前驱体,采用浸渍法和热退火法制备3D石墨烯-还原氧化石墨烯-碳泡沫(G-RGO@CF)。采用扫面电子显微镜、紫外-可见-近红外光谱仪等对G-RGO@CF进行形貌、结构进行表征。结果表明:G-RGO@CF展现出丰富的孔结构(孔隙率高达96.1%),高且宽的吸收率(96.6%,其波长为250~2 500 nm)和亲水性;在1 kW/m2太阳光强照射下,G-RGO@CF的蒸发速率和能量转换效率分别为1.54 kg/(m2·h)和96.4%;在经历10次循环后,仍保持较高的蒸发速率和能量转换效率。

关键词:石墨烯-氧化石墨烯复合纳米片;太阳能水蒸发;界面蒸发

Abstract:3 D graphene-reduced graphene oxide-carbon foam(G-RGO@CF) was prepared by impregnation and thermal annealing using melamine foam(MF) as 3 D carrier and graphene-graphene oxide(G-GO) composite nanosheets as precursors. The morphology and structure of the materials were characterized by scanning electron microscope(SEM) and UV-vis-NIR spectrometer. The results show that G-RGO@CF showes rich pore structure(porosity 96.1%), high and broadband light absorption(96.6%, wavelength 250~2 500 nm), and good hydrophilicity. The evaporation rate and energy conversion efficiency of G-RGO@CF under 1 kW/m2 are 1.54 kg/(m2·h) and 96.4%, respectively. The water evaporation system retaines high evaporation rate and energy conversion efficiency after 10 cycles.

Keywords:graphene-graphene oxide composite nanosheets; solar steam generation; interfacial evaporation


参考文献(References):

[1]TIAN Y, ZHAO C Y.A review of solar collectors and thermal energy storage in solar thermal applications[J].Applied Energy, 2013, 104: 538-553.

[2]陈德明,徐刚.太阳能热利用技术概况[J].物理,2007,36(11): 840-847.

[3]XUAN W, LIMIN W, JEANETTE T, et al.Evaporation above a bulk water surface using an oil lamp inspired highly efficient solar-steam generation strategy[J].Journal of Materials Chemistry A, 2018, 6: 12276-12274.

[4]ZHU L, DING T, GAO M, et al.Shape conformal and thermal insulative organic solar absorber sponge for photothermal water evaporation and thermoelectric power generation[J].Laser Physics Review, 2019, 9(22): 1900250.

[5]LIU H, HUANG Z, LIU K, et al.Interfacial solar-to-heat conversion for desalination[J].Advanced Energy Materials, 2019, 9(21): 19003101.

[6]ZHOU X, ZHAO F, GUO Y, et al.A hydrogel-based antifouling solar evaporator for highly efficient water desalination[J].Energy & Environmental Science, 2018, 11: 1985-1992.

[7]YANG M Q, GAO M, HONG M, et al.Solar-energy capture: visible-to-NIR photon harvesting: progressive engineering of catalysts for solar-powered environmental purification and fuel production[J].Advanced Materials, 2018, 30: 1870363.

[8]ZHU L, TAN C F, GAO M, et al.Microreactors: design of a metal oxide-organic framework(MOOF)foam microreactor: solar-induced direct pollutant degradation and hydrogen generation[J].Advanced Materials, 2015, 27:7681.

[9]SHI Y, LI R, SHI Y, et al.A robust CuCr2O4/SiO2 composite photothermal material with underwater black property and extremely high thermal stability for solar-driven water evaporation[J].Advanced Sustainable Systems, 2017, 2(3): 1700145.

[10]YANG X, YANG Y, FU L, et al.An ultrathin flexible 2D membrane based on single-walled nanotube-MoS2 hybrid film for high-performance solar steam generation[J].Advanced Functional Materials, 2018, 28: 1704505.

[11]ZHU M, LI Y, CHEN F, et al.Plasmonic wood for high-efficiency solar steam generation[J].Advanced Energy Materials, 2018, 8: 1701028.

[12]MATEO D, ALBERO J, GARCIA H.Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst[J].Energy & Environmental Science, 2017, 10: 2392-2400.

[13]XUAN W, EDWARD M R, JACK L Pet al.A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation[J].Nano Energy, 2019, 56: 708-715.

[14]ZHANG W, ZHU W, SHI S N, et al.Bioinspired foam with large 3D macropores for efficient solar steam generation[J].Journal of Materials Chemistry A, 2018, 6: 16220-16227.

[15]ZHU L, GAO M, WANG X, et al.Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation[J].Advanced Energy Materials, 2018, 8: 1702149.

[16]HUO B, JIANG D, CAO X, et al.N-doped graphene/carbon hybrid aerogels for efficient solar steam generation[J].Carbon, 2018, 142:13-19.

[17]YANG Y, ZHAO R, ZHANG T, et al.Graphene-based standalone solar energy converter for water desalination and purification[J].ACS Nano, 2018, 12: 829-835.

[18]FU Y, WANG G, MEI T, et al.Accessible graphene aerogel for efficiently harvesting solar energy[J].ACS Sustainable Chemistry Engineering, 2017, 5: 4665-4671.

[19]YANG F, GANG W, MING G, et al.Oxygen plasma treated graphene aerogel as a solar absorber for rapid and efficient solar steam generation[J].Carbon, 2018, 130: 250-256.

[20]OBRAZTSOV A.Chemical vapour deposition: making graphene on a large scale[J].Nature Nanotechnology, 2009, 4: 212-213.

[21]SEGAL M.Selling graphene by the ton[J].Nature Nanotechnology, 2009, 4: 612-614.

[22]YOUSEFI N, LU X L, ELIMELECH M, et al.Environmental performance of graphene-based 3D macrostructures[J].Nature Nanotechnology, 2019, 14: 107-119.

[23]TIAN J, HUANG X, WU W.Graphene-based stand-alone networks for efficient solar steam generation[J].Industrial and Engineering Chemistry Research, 2020, 59: 1135-1141.

[24]HU X, XU W, ZHOU L, et al.Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun[J].Advanced Materials, 2017, 29: 1604031.

[25]JIANG D, LI C, YANG W, et al.Fabrication of an arbitrary-shaped and nitrogen-doped graphene aerogel for highly compressible all solid-state supercapacitors[J].Journal of Materials Chemistry A, 2017, 5: 18684-18690.

[26]LI C, JIANG D, LIANG H, et al.Superelastic and arbitrary-shaped graphene aerogels with sacrificial skeleton of melamine foam for varied applications[J].Advanced Functional Materials, 2018, 28: 1704674.

[27]JIANG D, LIANG H, LIU Y, et al.In situ generation of CoS 1.097 nanoparticles on S/N co-doped graphene/carbonized foam for mechanically tough and flexible all solid-state supercapacitors[J].Journal of Materials Chemistry A, 2018, 6: 11966-11977.

[28]LI Y, GAO T, YANG Z.3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination[J].Advanced Materials, 2017, 29(26): 17009818.

[29]GUO Z, WANG G, MING X, et al.Pegylated self-growth MoS2 on a cotton cloth substrate for high-efficiency solar energy utilization[J].ACS Applied Materials & Interfaces, 2018, 10: 24583-24589.

[30]FANG Q, LI T, CHEN Z, et al.Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media[J].ACS Applied Materials & Interfaces, 2019, 11: 10672-10679.

[31]TAHIR Z, KIM S, ULLAH F.Highly efficient solar steam generation by glassy carbon foam coated with two-dimensional metal chalcogenides[J].ACS Applied Materials & Interfaces, 2020, 12 :2490-2496.

[32]MU P, ZHANG Z, BAI W, et al.Superwetting monolithic hollow-carbon-nanotubes aerogels with hierarchically nanoporous structure for efficient solar steam generation[J].Advanced Energy Materials, 2019, 9: 1802158.

[33]JIN Y, CHANG J, SHI Y, et al.A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation[J].Journal of Materials Chemistry A, 2018, 6: 7942-7949.

[34]QIU P, LIU F, XU C, et al.Porous three-dimensional carbon foams with interconnected microchannels for high-efficiency solar-to-vapor conversion and desalination[J].Journal of Materials Chemistry A, 2019, 7: 13036-13042.

[35]ZHAO X, ZHA X J, PU J H, et al.Macroporous three-dimensional MXene architectures for highly efficient solar steam generation[J].Journal of Materials Chemistry A, 2019, 7: 10446-10455.

[36]HU R, ZHANG J, KUANG Y, et al.A Janus evaporator with low tortuosity for long-term solar desalination[J].Journal of Materials Chemistry A, 2019, 7: 15333-15340.

[37]LIANG X, ZHANG X, HUANG Q, et al.Simple preparation of external-shape and internal-channel size adjustable porous hydrogels by fermentation for efficient solar interfacial evaporation[J].Solar Energy, 2020, 208: 778-786.