郭卫国1,2,董鹏飞2,朱治平2,3,孙国刚1,魏宸明2,4
(1.中国石油大学(北京)机械与储运工程学院,北京 102249;2.中国科学院 工程热物理研究所,北京 100190;3.中国科学院大学 工程科学学院,北京 100049;4.华北电力大学 能源动力与机械工程学院,北京 102206)
DOI:10.13732/j.issn.1008-5548.2022.03.005
收稿日期: 2021-11-08, 修回日期:2022-03-04,在线出版时间:2022-04-27。
基金项目:中国科学院科技成果转移转化重点专项项目,编号:KFJ-HGZX-003。
第一作者简介:郭卫国(1997—),男,硕士研究生,研究方向为循环流化床气固两相流动。E-mail:guoweiguo@iet.com。
通信作者简介:董鹏飞(1983—),男,助理研究员,博士,研究方向为煤气化及流态化。E-mail:dongpengfei@iet.com。
摘要:针对循环流化床煤气化装置在工程实际运行过程中出现返料回路受炉膛压力波动而出现气固分离效率下降、返料不畅的问题,使用两级分离返料循环流化床装置进行冷态试验,研究不同床料粒径分布、一级分离器入口固气质量比、一级分离器入口气速对一级分离器分离效率和二级返料器压力波动的影响规律。结果表明:入口固气质量比从3.5增大至6.2,一级分离器分离效率从90.78%增大至94.12%,二级返料回路受炉膛压力波动影响小,压降标准差维持在0.044 kPa左右;入口风速从8 m/s增大至15 m/s,一级分离器分离效率从92.06%增大至95.20%;运行床料中位粒径从499.9μm减小到78.1μm,系统分离效率维持在大于99.98%的前提下,一级分离器分离效率从97.02%减小87.06%;运行床料中位粒径小于107.3μm时,二级回路Geldart C类颗粒体积分数大于35.56%,二级立管内物料流化较差,包含较多的细床料,影响系统稳定运行。
关键词:分离器;分离效率;压力波动;循环流率
Abstract:In view of the problems that decrease in the gas-solid separation efficiency and poor reture of the material in the return loop of the circulating fluidized bed coal gasification unit caused by the fluctuation of furnace pressure, cold state test was carried out on the two-stage separation and return material circulating fluidized bed device. The effects of different bed material particle size distribution, solid-gas ratio at the inlet of the first stage separator, and gas velocity at the inlet of the first stage separator on the separation efficiency of primary separator and the pressure fluctuation of the secondary loop seals were studied. The results show that as the inlet solid-gas ratio increases from 3.5 to 6.2, and the separation efficiency of the primary separator increases from 90.78% to 94.12%. The secondary loop seals is less affected by the furnace pressure fluctuation, and the standard deviation of the pressure drop is maintained at about 0.044 kPa. As the inlet gas velocity increases from 8 m/s to 15 m/s, the separation efficiency of the first-stage separator increases from 92.06% to 95.20%. As the operation the median particle size of the bed material decreases from 499.9 μm to 78.1 μm, and the separation efficiency of the system is maintained at greater than 99.98%, the separation efficiency of the primary separator is reduced from 97.02% by 87.06%. The median particle size of the bed material is less than 107.3 μm, and the volume fraction of Geldart C particles in the secondary loop selas is greater than 35.56 %, the fluidization of the material in the secondary riser is poor, carrying more fine bed material, which affects the stable operation of the system.
Keywords:separator; separation efficiency; pressure fluctuation; circulating flow rate
参考文献(References):
[1]JIANG H, CHEN H, GAO J, et al.Characterization of gas-solid fluidization in fluidized beds with different particle size distributions by analyzing pressure fluctuations in wind caps[J].Chemical Engineering Journal, 2018, 352(15): 923-939.
[2]KONG H, ZHANG M, DENG B, et al.The mechanism and solving measures for standpipe vibration of the circulating fluidized bed boilers[J].Chemical Engineering Research and Design, 2021, 173: 150-157.
[3]魏耀东, 刘仁桓, 孙国刚.负压差立管内气固流动的不稳定性实验分析[J].过程工程学报, 2003(6): 493-497.
[4]ZHANG J Y, RUDOLPH V.Flow instability in non-fluidized standpipe flow[J].Powder Technology, 1998, 97(2): 109-117.
[5]刘志.立管窜气对旋风分离器分离效率的影响[D].北京: 清华大学, 2015.
[6]YANG J, SUN G, ZHAN M.Prediction of the maximum-efficiency inlet velocity in cyclones[J].Powder Technology, 2015, 286: 124-131.
[7]MORIN M, RAYNAL L, KARRI S B R, et al.Effect of solid loading and inlet aspect ratio on cyclone efficiency and pressure drop: experimental study and CFD simulations[J].Powder Technology, 2021, 377(2): 174-185.
[8]孙国刚, 时铭显.提高旋风分离器捕集细粉效率的技术研究进展[J].现代化工, 2008(7): 64-69.
[9]LIM J H, PARK S I, LEE H J, et al.Performance evaluation of a tangential cyclone separator with additional inlets on the cone section[J].Powder Technology, 2020, 359(1): 118-125.
[10]HUANG Y, ZHANG M, LYU J, et al.Effects of gas leakage on the separation performance of a cyclone:part 1: experimental investigation[J].Chemical Engineering Research and Design, 2018, 136: 900-905.
[11]朱治平.加压循环流化床的实验与模型研究[D].北京: 中国科学院大学, 2008.
[12]XIE H, LIN X, WANG S, et al.Real-time diagnosis of circulation stability for CFB combustion optimization using a novel image trajectory method[J].Fuel, 2021, 305(1): 121-554.
[13]COUTURIER M F, STEVENS D.Capture efficiency of an industrial CFB cyclone[M].Pennsylvania:Circulating Fluidized Bed Technology IV, 1993: 654-659.
[14]FASSANI F L S, GOLDSTEIN L.A study of the effect of high inlet solids loading on a cyclone separator pressure drop and collection efficiency[J].Powder Technology, 2000, 107(1): 60-65.
[15]岑可法, 倪明江, 严建华.气固分离理论及技术[M].杭州: 浙江大学出版社, 1999: 269-270.
[16]BARONE D, LOTH E, SNYDER P.Influence of particle size on inertial particle separator efficiency[J].Powder Technology, 2017, 318: 177-185.
[17]王肖.撞击式气固分离器颗粒运动特性数值模拟和试验研究[D]杭州: 浙江大学, 2017.
[18]王伟, 叶雪平.基于惯性原理的流态化气固分离方法讨论[J].炼油技术与工程, 2016, 46(5): 19-22.
[19]林小鹏, 俞玉玲.新型撞击式气固分离器的冷态优化试验研究[J].山东化工, 2011, 40(1): 42-45.
[20]SUN Z, ZHANG C, ZHU J.Numerical investigations on gas-solid flow in circulating fluidized bed risers using a new cluster-based drag model[J].Particuology, 2021, 63: 9-23.
[21]SAIKIA R, MAHANTA P, DAS H J.Transient hydrodynamics and heat transfer behaviour in a pressurized circulating fluidized bed during abrupt changes in operating pressure[J].International Communications in Heat and Mass Transfer, 2021, 125: 105-296.
[22]DONG P, TU Q, WANG H, et al.Effects of pressure on flow characteristics in a pressurized circulating fluidized bed[J].Particuology, 2021, 59: 16-23.
[23]刘仁桓, 魏耀东, 时铭显.双气路循环流化床压力平衡的实验研究[J].化工机械, 2008, 35(6): 323-326,352.
[24]CHEN H, YANG D, LI H, et al.Study on the overall pressure balance of a downflow circulating fluidized bed system[J].China Particuology, 2006, 4(3): 153-159.
[25]王月, 周祖旭, 朱治平, 等.循环流化床两级返料器冷态试验研究[J].化学工程, 2014, 42(7): 52-56.
[26]ROSSBACH V, PADOIN N, MEIER H F, et al.Influence of ultrasonic waves on the gas-solid flow and the solids dispersion in a CFB riser: numerical and experimental study[J].Powder Technology, 2021, 389: 430-449.
[27]金涌, 祝京旭, 汪展文, 等.流态化工程原理[M].北京: 清华大学出版社, 2001: 36-37.
[28]JIANG Z, FATAH N.New investigation of micro-fluidized bed: the effect of wall roughness and particle size on hydrodynamics regimes[J].Chemical Engineering Journal, 2021, 430(4): 133075.
[29]胡小康, 刘小成, 徐俊, 等.循环流化床提升管内压力脉动特性[J].化工学报, 2010, 61(4): 825-831.
[30]姚宣, 杨石, 晁俊楠, 等.循环流率对循环流化床回路压降影响的实验研究[J].中国电机工程学报, 2010, 30(20): 1-6.