ISSN 1008-5548

CN 37-1316/TU

2022年28卷  第3期
<返回第3期

功能化氮化硼微球的制备与应用

Preparation and application of functionalized boron nitride microspheres

许 浪,单 倩,郑至远,季帅坤,俞 喆,徐婧雯,毋 伟

(北京化工大学 化学工程学院,北京 100000)


DOI:10.13732/j.issn.1008-5548.2022.03.004

收稿日期: 2022-02-17, 修回日期:2022-03-21,在线出版时间:2022-04-25。

基金项目:国家级大学生创新创业训练计划支持项目,编号:12040027013。

第一作者简介:许浪(2000—),女,研究方向为氮化硼微球的制备与应用。E-mail: xulang@mail.buct.edu.cn。

通信作者简介:毋伟(1966—),男,教授,博士,博士生导师,研究方向为纳米材料的制备。E-mail: wuwei@mail.buct.edu.cn。


摘要: 采用球磨及高速剪切法对六方氮化硼进行剥离及改性,得到六方氮化硼纳米片(BNNSs),将 BNNSs 采用喷雾干燥技术组装成具有多孔结构的功能化六方氮化硼微球;利用SEM、TEM、BET、FTIR等技术对六方氮化硼微球进行形貌、比表面积、物相成分分析;将六方氮化硼微球用于吸附罗丹明B(RhB),研究吸附热力学和吸附动力学模型;对比六方氮化硼微球煅烧前、后吸附性能的差异,探究吸附条件对吸附性能的影响。结果表明:功能化六方氮化硼微球由氮化硼纳米片组成,呈多孔结构,平均直径约为6 μm;BNNSs表面成功接枝氨基和羟基官能团,使得BNNSs组装成的六方氮化硼微球亲水性好,有利于对水相中RhB的吸附;当RhB质量浓度为20 mg/L时,功能化六方氮化硼微球比BNNSs的吸附性能更好,吸附容量大,且吸附速率快,吸附容量可达29.29 mg/g;吸附过程符合Langmuir等温吸附模型和拟二级动力学模型,为单分子层化学吸附,不受温度和pH的影响。

关键词: 氮化硼纳米片;功能化氮化硼微球;罗丹明B;吸附

Abstract:Functionalized boron nitride nanosheets(BNNSs) were prepared by exfoliation and modification of hexagonal boron nitride by ball milling and high speed shear, and assembled into hexagonal boron nitride microspheres with porous structure by spray drying technique. The morphology, specific surface area and phase composition of the hexagonal boron nitride microspheres were analyzed by SEM, TEM, BET and FTIR techniques. Hexagonal boron nitride microspheres were used to adsorb rhodamine B(RhB), and adsorption thermodynamics and kinetic were studied. The adsorption properties of hexagonal boron nitride microspheres before and after calcination were compared, and the effect of adsorption conditions on the adsorption properties was investigated. The results show that the prepared hexagonal boron nitride microspheres are composed of numerous nanosheets with porous structure and their average diameter is about 6 μm. The successful grafting of amino and hydroxyl functional groups on the surface of BNNSs can make the assembled boron nitride microspheres excellent hydrophilicity, which is beneficial to the adsorption of RhB in the aqueous phase. When RhB concentration is 20 mg/L, functionalized boron nitride microspheres have better adsorption performance than BNNSs, with larger adsorption capacity and faster adsorption rate, and the adsorption capacity can reach 29.29 mg/g. The adsorption process conforms to Langmuir isotherm adsorption model and pseudo-second-order kinetic model, which is a monolayer chemical adsorption, and the adsorption process is not affected by temperature and pH.

Keywords:boron nitride nanosheet; functional boron nitride microsphere; rhodamine B; adsorption


参考文献(References):

[1]MENG J, REN M F, WANG S Y, et al.A smart adsorbent with ability of environmentally friendly regeneration for p-nitrophenol removal in aqueous solution[J].Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31: 2381-2392.

[2]ZHANG J, ZHU M M, JONES I, et al.Performance of activated carbons prepared from spent tyres in the adsorption of rhodamine B in aqueous solutions[J].Environmental Science and Pollution Research International, 2021, 28: 52862-52872.

[3]LIOU T H, TSENG Y K, LIU S M, et al.Green synthesis of mesoporous graphene oxide/silica nanocomposites from rich husk ash: characterization and adsorption performance[J].Environmental Technology & Innovation, 2021, 22: 101424.

[4]LIANG X, NI Z J, ZHAO L, et al.Improving surface areas of covalent organic framework with surfactant assisted solvothermal method and its adsorption properties for rhodamine B[J].Materials Chemistry and Physics, 2021, 270: 124725.

[5]ZHANG Y N, HAN H J, WANG X H, et al.Utilization of NaP zeolite synthesized with different silicon species and NaAlO2 from coal fly ash for the adsorption of rhodamine B[J].Journal of Hazardous Materials, 2021, 415: 125627.

[6]NAZIR M A, BASHIR M S, JAMSHAID M, et al.Synthesis of porous secondary metal-doped MOFs for removal of rhodamine B from water: role of secondary metal on efficiency and kinetics[J].Surfaces and Interfaces, 2021, 25: 101261.

[7]LI Y F, YAN X L, HU X Y, et al.Trace pyrolyzed ZIF-67 loaded active-ted carbon pellets for enhanced adsorption and catalytic degradation of rhodamine B in water[J].Chemical Engineering Journal, 2019, 375: 122003.

[8]ROY S, ZHANG X, ANAND B, et al.Structure, properties and applications of two-dimensional hexagonal boron nitride[J].Advanced Materials, 2021, 33(44): 2101589.

[9]XIONG J, DI J, ZHU W S, et al.Hexagonal boron nitride adsorbent: synthesis, performance tailoring and applications[J].Journal of Energy Chemistry, 2020, 40(1): 99-111.

[10]LIN Y, WILLIAMS T V, CAO W, et al.Defect functionalization of hexagonal boron nitride nanosheets[J].The Journal of Physical Chemistry C, 2010, 114: 17434-17439.

[11]LEI W, MOCHALIN V N, LIU D, et al.Boron nitride colloidal solution, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization[J].Nature Communications, 2015, 6: 9849.

[12]LI G Y, ZHU M Y, GONG W B, et al.Boron nitride aerogels with super-flexibility ranging from liquid nitrogen temperature to 1000 ℃[J].Advanced Functional Materials, 2019, 29(20): 1900188.

[13]XUE Y M, DAI P C, ZHOU M, et al.Multifunctional superelastic foam-like boron nitride nanotubular cellular-network architectures[J].ACS Nano, 2017, 11(1): 558-568.

[14]WANG J M, LIU D, LI Q X, et al.Lightweight, superelastic yet thermoconductive boron nitride nanocomposite aerogel for thermal energy regulation[J].ACS Nano, 2019, 13(7): 7860-7870.

[15]CAO B X, SHEN F, DAI H.Studies on spray drying[J].Journal of Tsinghua University(Natural Science), 1948(S2): 115-126.

[16]MA J, YU F, ZHOU L, et al.Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solutionby alkali-activated multiwalled carbon nanotubes[J].ACS Applied Materials & Interfaces, 2012, 4(11): 5749-5760.

[17]GHORAI S, SARKAR A, RAOUFI M, et al.Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica[J].ACS Applied Materials & Interfaces, 2014, 6(7): 4766-4777.

[18]ZHOU J B, TANG C, CHENG B, et al.Rattle-type carbon-alumina core-shell spheres: synthesis and application for adsorption of organic dyes[J].ACS Applied Materials & Interfaces, 2012, 4(4): 2174-2179.

[19]CHEN X F, JIA S L, DING N, et al.Capture of aromatic organic pollutants by hexagonal boron nitride nanosheets: density functional theoretical and molecular dynamic investigation[J].Environmental Science: Nano, 2016, 3: 1493-1503.