李江涛1,2,李晓光3,孙 健3,刘岳强3,郑 浩3,张祥雷1,宁 辉3,李子瑞2
(1.河北工业大学 机械工程学院,天津 300401;2.温州大学 机电工程学院,浙江 温州 325035;3.丹东百特仪器有限公司,辽宁 丹东 118009)
DOI:10.13732/j.issn.1008-5548.2022.04.015
收稿日期: 2022-03-09, 修回日期:2022-05-31,在线出版时间:2022-06-22。
基金项目:国家自然科学基金项目,编号:12072100。
第一作者简介:李江涛(1996—),男,硕士研究生,研究方向为多物理场仿真及优化。E-mail:1738144236@qq.com。
通信作者简介:宁辉 (1978—),男,博士,研究方向为胶体物理和分析仪器研制。E-mail:hui.ning@bettersize.com。
摘要:为提高插入式电极的测量精度,减小测试区域电场及焦耳热对纳米颗粒Zeta电位测量结果稳定性的影响,通过对插入式电极进行多物理场的数值模拟,研究电极底部极片结构布置对测试区域电场及温度分布的影响,并通过实验对所选电极结构进行验证。结果表明:当插入式电极极片长度为8 mm,极片宽度为6 mm,极片间距为4 mm时测试结果的标准偏差更小,所检测颗粒Zeta电位的标准差为0.98 mV,测试稳定性及测量精度更高。
关键词:插入式电极;电热耦合;优化设计
Abstract:In order to improve the measurement accuracy of the insertion electrode and reduce the influence of electric field and Joule heat on the stability of Zeta potential measurement results, multi-physical field numerical simulation of the insertion electrode was carried out to study the influence of the electrode bottom electrode layout on the electric field and temperature distribution in the test area, and the accuracy and stability of the selected electrode were verified by experiments. The results show that when the electrode length is 8 mm, the electrode width is 6 mm, and the electrode spacing is 4 mm, the standard deviation of the test results is smaller. The standard deviation of Zeta potential was 0.98 mV and the insertion electrode has better stability and accuracy.
Keywords:insertion electrode; coupling of electricity and heat; optimization design
参考文献(References):
[1]ATTARD P.Recent advances in the electric double layer in colloid science[J].Current Opinion in Colloid &Interface Science,2001,6(4):366-371.
[2]吕思瑶,朱登兆,鲍云翔,等.大豆分离蛋白与染料木素共价交联对蛋白表征和结构的影响[J/OL].食品科学:1-12[2021-12-15].https://kns-cnki-net.webvpn.wzu.edu.cn/kcms/detail/11.2206.TS.20211015.2005.002.html.
[3]童志明,李亚兵,黄茗,等.井下作业返排残液对原油破乳脱水的影响及破乳剂筛选[J].化学与生物工程,2021,38(11):43-49.
[4]王智巧,马杰,陈雅丽,等.不同环境条件下水铁矿和针铁矿纳米颗粒稳定性[J].环境科学,2020,41(5):2292-2300.
[5]杨娟,尚曙玉,贾安,等.木犀草素固体脂质纳米粒的制备及其体内药动学研究[J].中成药,2021,43(9):2281-2286.
[6]刘伟,张珊珊,THOMAS J C,等.基于频谱细化算法的电泳光散射Zeta电位测量方法[J].光学学报,2017,37(2):292-298.
[7]秦福元,刘伟,王文静,等.Zeta电位计算过程中Henry函数的优化表达式[J].光学学报,2017,37(10):328-335.
[8]MILLER J F,SCHATZEL K,VINCENT B.The determination of very small electrophoretic mobilities in polar and nonpolar colloidal dispersions using phase analysis light scattering[J].Journal of Colloid and Interface Science,1991,143(2):532-554.
[9]郝瑞锋,邱健,彭力,等.基于电泳光散射的纳米颗粒Zeta电位分析仪的研制[J].自动化与信息工程,2018,39(2):1-7,12.
[10]秦福元.基于相位分析光散射的Zeta电位测量研究[D].淄博:山东理工大学,2018.
[11]韩国强.电泳光散射Zeta电位检测系统研究及其关键模块设计[D].广州:华南师范大学,2014.
[12]吕永维.电泳光散射法纳米颗粒Zeta电位测量方法研究[D].广州:华南师范大学,2015.
[13]吴恒.纳米颗粒Zeta电位测量关键技术的研究[D].广州:华南师范大学,2016.
[14]黄桂琼,邱健,韩鹏,等.U型样品池中电场分布仿真及其对Zeta电位测量的影响[J].中国粉体技术,2019,25(4):26-32.
[15]曹军,洪芳军,郑平.PDMS微流控芯片中焦耳热效应的数值研究[J].工程热物理学报,2009,30(1):124-128.
[16]XUAN X C,SINTON D,LI D Q.Thermal end effects on electroosmotic flow in a capillary[J].International Journal of Heat &Mass Transfer,2004,47(14/15/16):3145-3157.