孙 千1,高 尚2a,黄梦诗2a,马 清2b,关 康1,彭 诚1
(1.华南理工大学 材料科学与工程学院,广东 广州 510640;2.哈尔滨工业大学(深圳) a.材料科学与工程学院;b.实验与创新实践教育中心,广东 深圳 518055)
DOI:10.13732/j.issn.1008-5548.2022.04.008
收稿日期: 2021-06-16, 修回日期:2021-12-21,在线出版时间:2022-06-17。
基金项目:国家自然科学基金项目,编号:51702100;教育部产学合作协同育人项目,编号:201802284007。
第一作者简介:孙千(1987—),男,实验师,硕士,研究方向为陶瓷材料和材料表征。E-mail:mssqian@scut.edu.cn。
通信作者简介:高尚(1980—),男,高级实验师,硕士,研究方向为材料表征。E-mail:gaoshang@hit.edu.cn。
摘要:为应对纳米粉体在扫描电镜成像中出现的荷电效应,分析荷电效应的形成机理;推导样品与入射电子束响应之间的关系式,揭示样品表面累积的有效电荷密度与电流、每帧扫描时间、放大倍率和电子总产额的关系;在荷电场达到近似于稳态后,建立表面累积电势与束流、放大倍数、电阻率以及电子总产额的关系表达式;分析缓解或消除荷电效应的各种措施的利弊,揭示当代场发射扫描电镜的低电压和高分辨的成像能力,探索场发射扫描电镜的较佳成像策略。结果表明:根据关系表达式可以指导电镜参数设置或者探测器的选择,以克服荷电现象;对纳米粉体表面镀导电膜虽然可以消除荷电效应,但会影响观察纳米粉体的真实形貌;现代场发射扫描电镜能够实现低电压、高分辨成像,可以克服镀膜对粉体形貌造成的影响。
关键词:纳米粉体;扫描电镜;高分辨成像;荷电效应;低电压
Abstract:In order to cope with the charge effect of nano-powders in scanning electron microscopy, the mechanism of charge effect was analyzed. The relationship between the sample and the incident electron beam response was derived to reveal the relationship between the accumulated effective charge density on the sample surface and the current, scanning time per frame, magnification and total electron production. After the charge field reached a steady state, the expression of the relationship between the accumulated surface potential and beam current, amplification, resistivity and total electron production was established. The advantages and disadvantages of various measures to alleviate or eliminate the charge effect were analyzed, the low voltage and high resolution imaging ability of modern field emission scanning electron microscopy was revealed and the optimal imaging strategy of field emission scanning electron microscopy was explored. The results show that the relationship expression can be used to guide the electron microscope parameter setting or detector selection to overcome the charge phenomenon. Plating conductive film on the surface of nano-powder can eliminate the charge effect, but it will affect the observation of the real morphology of nano-powder.Modern field emission scanning electron microscopy can realize low voltage and high resolution imaging, which can overcome the influence of coating on the morphology of powder.
Keywords:nano-powders; scanning electron microscopy; high resolution imaging; charge effect; low voltage
参考文献(References):
[1]李凤生,刘宏英,陈静,等.微纳米粉体技术理论基础[M].北京:科学出版社,2010:241-242.
[2]卢寿慈,沈志刚,郑水林,等.粉体技术手册[M].北京:化学工业出版社,2004:673-992.
[3]黄勇,张立明,汪长安,等.先进结构陶瓷研究进展评述[J].硅酸盐通报,2005,24(5):91-101.
[4]徐如人,庞文琴.分子筛与多孔材料化学[M].北京:科学出版社,2004:18-19.
[5]高庆福.纳米多孔SiO2-Al2O3气凝胶及其高效隔热复合材料研究[D].长沙:国防科学技术大学,2009.
[6]PAN L C,ZHANG F G,MENG R,et al.Anomalous change of airy disk with changing size of spherical particles[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2016,170:83-89.
[7]WILLIAMS D B,CARTER C B.Transmission electron microscopy:a textbook for materials science[M].Berlin:Springer,2009:9-10.
[8]HAGUENAU F,HAWKES P W,HUTCHISON J L,et al.Key events in the history of electron microscopy[J].Microscopy and Microanalysis,2003,9:96-138.
[9]SHAFFNER T J,VELD R D V.‘Charging’ effects in the scanning electron microscope[J].Journal of Physics E:Scientific Instruments,1971,11(4):633-637.
[10]小威廉卡丽斯特,大卫来斯威什.材料科学与工程基础[M].4版.郭福,马立民,译.北京:化学工业出版社,2015:472.
[11]曾毅,吴伟,刘紫微.低电压扫描电镜应用技术研究[M].上海:上海科学技术出版社,2015:61.
[12]GOLDSTEIN J I,NEWBURY D E,MICHAEL J R,et al.Scanning electron microscopy and X-ray microanalysis[M].4 th ed.Berlin:Springer,2018:134-138.
[13]CAZAUX J.Charging in scanning electron microscopy ‘from inside and outside’ [J].Scanning,2004,26:181-203.
[14]POSTEK M T,KEERY W J,LARRABEE R D.Specimen biasing to enhance or suppress secondary electron emission from charging specimens at low accelerating voltages[J].Scanning,1989,11:111-121.
[15]CAZAUX J.About the role of the various types of secondary electrons (SE1;SE2;SE3) on the performance of LVSEM[J].Journal of Microscopy,2004,214(3):341-347.
[16]华佳捷,刘紫微,林初城,等.场发射扫描电镜中荷电现象研究[J].电子显微学报,2014,33(3):226-232.
[17]JOY D C,JOY C S.Low voltage scanning electron microscopy[J].Micron,1996,27(3/4):247-263.
[18]SCHWIND G A,MAGERA G,SWANSON L W.Comparison of parameters for schottky and cold field emission sources[J].Journal of Vacuum Science and Technology B,2006,24(6):2897-2901.
[19]JAKSCH H,MARTIN J P.High-resolution,low-voltage SEM for true surface imaging and analysis[J].Fresenius’ Journal of Analytical Chemistry,1995,353:378-382.
[20]JIRUE J,HAVELKA M,LOPOUR F,et al.Novel field emission SEM column with beam deceleration technology[J].Ultramicroscopy,2014,146:27-32.
[21]YOUNG R,BOSCH E,UNCOVSKY M,et al.Low-energy secondary electron filtering with immersion lens SEM[J].Microscopy and Microanalysis,2009,15(S2):222-223.