朱天孝1,徐林冲1,朱 勇2,白丽娟1,袁爱群1,黄增尉1
(1. 广西民族大学 化学化工学院,广西 南宁 530006;2. 广西华纳新材料科技有限公司,广西 南宁 530103)
DOI:10.13732/j.issn.1008-5548.2022.04.005
收稿日期: 2021-06-28, 修回日期:2021-12-23,在线出版时间:2022-06-22。
基金项目:国家自然科学基金项目,编号:21666006。
第一作者简介:朱天孝(1997—),女,硕士研究生,研究方向为材料化学。E-mail:781805634@qq.com。
通信作者简介:黄增尉(1971—),男,高级实验师,硕士,硕士生导师,研究方向为材料化学。E-mail:87526612@qq.com。
摘要:以重质碳酸钙(CaCO3)为核,以硅酸钠为壳层硅源,以并流法制备核-壳结构的CaCO3@SiO2;采用单因素法研究反应温度、反应时间、 pH、碳酸钙初始质量浓度、 SiO2质量分数、陈化时间、搅拌速率等工艺参数对核-壳结构耐酸性的影响,优化工艺参数,降低产品酸溶率,提高碳酸钙的耐酸性能;采用SEM、 TEM、 XRD、 XPS、 FT-IR等手段表征CaCO3@SiO2产物,在不同pH条件下进行壳层SiO2的生长动力学分析。结果表明:当反应温度为90℃、反应时间为120 min、 pH为9.5~10、碳酸钙初始质量浓度为100 g/L、 SiO2质量分数为6%、陈化时间为36 h、搅拌速率为250 r/min时,制备的CaCO3@SiO2的酸溶率可达到最低值17.92%;碳酸钙颗粒表面是一种无定形SiO2纳米壳,且以Ca—O—Si键合在其表面;pH对CaCO3表面壳层SiO2的生长影响较大,当pH为10时的壳层生长速率大约是pH为7时的2倍。
关键词:CaCO3@SiO2;核-壳结构;碳酸钙;生长动力学
Abstract:Core-shell structure CaCO3@SiO2 was prepared by parallel flow method using heavy calcium carbonate(CaCO3)as core and sodium silicate as shell silicon source. The single factor method was used to study the influence of process parameters such as reaction temperature, reaction time, pH, calcium carbonate initial mass concentration, silica mass fraction, aging time, stirring rate, etc. on the acid resistance of the core-shell structure. The process parameters were optimized to reduce the acid solubility of the product and improve the acid resistance of calcium carbonate. CaCO3@SiO2products were characterized by SEM, TEM, XRD, XPS, FT-IR. The kinetic analysis of shell silica growth under different pH conditions was explored. The results show that when the reaction temperature is 90 ℃, the reaction time is 120 min, the pH is from 9.5 to 10, the initial mass concentration of calcium carbonate is 100 g/L, the mass fraction of silica is 6%, the aging time is 36 h and the stirring rate is 250 r/min, the acid solubility of prepared CaCO3@SiO2 can reach the lowest value of 17.92%. The surface of calcium carbonate particles is a kind of amorphous silica nanoshell and is bonded to the surface with Ca—O—Si. The pH has a great influence on the growth of silica on the surface of calcium carbonate. When the pH is 10, the growth rate of the shell layer is about twice that when the pH is 7.
Keywords:calcium carbonate coated withsilica; core-shell structure; calcium carbonate; growth dynamics
参考文献(References):
[1]马晓坤,盛野,周兵,等.超细高分散碳酸钙的原位制备及性能[J].高等学校化学学报,2018,39(3):491-496.
[2]杨仲尼,李增杰,李帅.纳米碳酸钙对道路石油沥青流变特性的影响[J].中外公路,2019,39(4):254-258.
[3]QAZVINIHA M R,ABDOUSS M,MUSAVIM,et al.Physical and mechanical properties of SEBS/polypropylene nanocomposites reinforced by nano CaCO3[J].Materialwissenschaft und Werkstofftechnik,2016,47(1):47-52.
[4]LOGHIN D F,GHIORGHITA C A,BLEGESCU O M M,et al.Composite materials based on chitosan/amidoximated starch beads and CaCO3[J].Journal of Crystal Growth,2019,529:1-13.
[5]KONG H S,KIM B J,KANG K S.Synthesis of CaCO3-SiO2 composite using CO2 for fire retardant[J].Materials Letters,2019,238:278-280.
[6]程国君,陈晨,李世迁,等.CaCO3/SiO2纳米粒子的表面改性及其对天然胶乳膜抗紫外光老化性能的影响[J].辐射研究与辐射工艺学报,2019,37(6):12-21.
[7]张素芳,徐灿校.国外耐酸碳酸钙之开发[J].化工矿物与加工,2002(2):25-27.
[8]满瑞林,赵眉飞.国内外耐酸性碳酸钙的研究进展[J].无机盐工业,2005(1):1-3.
[9]丁士育,金鑫,陈欣.改性纳米碳酸钙粉体的制备及其酸溶率[J].硅酸盐学报,2005,33(3):350-353.
[10]余宽亮.耐酸性CaCO3超细微胶囊的制备与研究[D].上海:东华大学,2009.
[11]盛野.功能性纳米碳酸钙复合材料的合成研究[D].长春:吉林大学,2006.
[12]马翠翠,陈雪梅.核-壳结构纳米CaCO3/SiO2复合粒子的制备[J].化学世界,2010,51(4):196-199,213.
[13]赵兴,廖其龙,王辅,等.溶胶-凝胶法制备CaCO3/SiO2复合粒子[J].人工晶体学报,2016,45(6):1602-1607.
[14]LI Z,HUANG C,GUO L,et al.Mass production and application of TiO2@CaCO3 composites in interior emulsion coatings[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,498:98-105.
[15]陈西知,陈雪梅,吴秋芳.纳米碳酸钙/二氧化硅复合粒子的制备及其在丁苯橡胶中的应用[J].无机盐工业,2012,44(4):43-45.
[16]张尚文,朱永伟,刘蕴锋,等.金刚石表面非均匀形核法包覆氧化铝的动力学[J].中国表面工程,2013,26(4):60-65.