甄 爽,杜玉成,王金淑,马延龙,李 杨,史默涵,林彭辉
(北京工业大学 材料与制造学部;新型功能材料教育部重点实验室,北京 100124)
DOI:10.13732/j.issn.1008-5548.2022.04.002
收稿日期: 2022-01-06, 修回日期:2022-03-25,在线出版时间:2022-06-17。
基金项目:国家自然科学基金项目,编号:51974011;宁夏回族自治区重点研发计划项目,编号:2019BFG02032。
第一作者简介:甄 爽 (1996—),女,硕士研究生,研究方向为功能材料。E-mail:1006862566@qq.com。
通信作者简介:杜玉成 (1963—),男,教授,博士,硕士生导师,研究方向为环境功能材料、非金属矿物材料。E-mail:ychengdu@bjut.edu.cn。
摘要:为提高海泡石对废水中重金属离子砷As(Ⅴ)的吸附效能,以海泡石为基体,以KMnO4、 MnCl2、 FeCl3为金属源,以尿素为沉淀剂,采用水热法制备纳米棒状结构羟基氧化铁-二氧化锰(FeOOH-MnO2)修饰的海泡石纤维样品;采用XRD、 SEM、 TEM、 BET、 XPS等对样品进行表征,并进行样品对As(Ⅴ)的吸附性能实验研究;讨论样品的合成与吸附机理。结果表明:FeOOH-MnO2呈短棒状均匀负载在海泡石纤维上;样品比表面积最高可达77.4 m2/g;当pH为7、室温条件下,对As(Ⅴ)的最大吸附容量为124.3 mg/g;样品对As(Ⅴ)的吸附是化学吸附,遵循Freundlich等温吸附模型;该吸附剂表现出良好的吸附循环性能,第5次循环后As(Ⅴ)去除率保持在90%左右。
关键词:羟基氧化铁-二氧化锰;海泡石纤维;砷离子;吸附性能
Abstract:In order to improve adsorption efficiency of sepiolite for heavy metal ion As(Ⅴ) in wastewater, nano rod-shaped sepiolite samples modified by hydroxyl iron oxide-manganese dioxide(FeOOH-MnO2) were prepared by hydrothermal method with sepiolite as matrix, KMnO4, MnCl2 and FeCl3 as metal source and urea as precipitant. The samples were characterized by XRD, SEM, TEM, BET and XPS and adsorption properties of As(Ⅴ) were studied experimentally. The synthesis and adsorption mechanism of samples were discussed. The results show that FeOOH-MnO2 is uniformly loaded on sepiolite fiber in the form of short rod. The maximum specific surface area of the sample can reach 77.4 m2/g. When pH is 7, the maximum adsorption capacity of As(Ⅴ) is 124.3 mg/g at room temperatm. The adsorption of As(Ⅴ) by sample is chemical adsorption, which follows Freundlich isothermal adsorption model. The adsorbent show good adsorption cycle performance because the removal rate of As(Ⅴ) remains about 90% after the fifth cycle.
Keywords:hydroxyl iron oxide-manganese dioxide; sepiolite fiber; arsenic ion; adsorption performance
参考文献(References):
[1]VERMA L,SIDDIQUE M A,SINGH J,et al.As(III) and As(V) removal by using iron impregnated biosorbents derived from waste biomass of Citrus limmeta (peel and pulp) from the aqueous solution and ground water[J].Journal of Environmental Management,2019,250:109-452.
[2]XIANG W,ZHANG X Y,CHEN J J,et al.Biochar technology in wastewater treatment:a critical review[J].Chemosphere,2020,252:126-539.
[3]DU Y C,ZHENG G W,WANG J S,et al.MnO2 nanowires in situ grown on diatomite:highly efficient absorbents for the removal of Cr(VI) and As(V)[J].Microporous Mesoporous Mater,2014,200:27-34.
[4]CHEN J,WANG J Y,ZHANG G S,et al.Facile fabrication of nanostructured cerium-manganese binary oxide for enhanced arsenite removal from water[J].Chemical Engineering Journal,2018,334:1518-1526.
[5]FENG L Y,CAO M H,MA X Y,et al.Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal[J].Journal of Hazardous Materials,2012(217/218):439-446.
[6]ZHANG G S,REN Z M,ZHANG X W,et al.Nanostructured iron(III)-copper(II) binary oxide:a novel adsorbent for enhanced arsenic removal from aqueous solutions[J].Water Research,2013,47:4022-4031.
[7]ZHANG G S,QU J H,LIU H J,et al.Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal[J].Water Research,2007,41:1921-1928.
[8]XU Y,LIANG X F,XU Y M,et al.Remediation of Heavy Metal-Polluted Agricultural Soils Using Clay Minerals:a review[J].Pedosphere,2017,27:193-204.
[9]BAHABADI F N,FARPOOR M H,MEHRIZI M H.Removal of Cd,Cu and Zn ions from aqueous solutions using natural and Fe modified sepiolite,zeolite and palygorskite clay minerals[J].Water Science and Technology,2017,75:340-349.
[10]SUN C T,ZHANG Y J,SONG S Y,et al.Tunnel-dependent supercapacitance of MnO2:effects of crystal structure[J].Journal of applied crystallography,2013,46:1128-1135.
[11]李强,杜玉成,李杨,等.硅藻土基纳米结构AlOOH-MnO2复合氧化物沉积制备及其对As(V)吸附性能[J].中国粉体技术,2019,25(4):61-69.
[12]DU Y C,YAN J,MENG Q,et al.Fabrication and excellent conductive performance of antimony-doped tin oxide-coated diatomite with porous structure[J].Materials Chemistry &Physics,2012,133:907-912.
[13]TIAN P,HAN X Y,NING G L,et al.Fabrication and excellent conductive performance of antimony-doped tin oxide-coated diatomite with porous structure[J].ACS Applied Materials &Interfaces,2013(5):12411-12418.
[14]LIU T,WU K,XUE W,et al.Characteristics and mechanisms of arsenate adsorption onto manganese oxide-doped aluminum oxide[J].Environmental Progress &Sustainable Energy,2015,34:1009-1018.
[15]ZHANG W,LIU C H,WANG L,et al.A novel nanostructured Fe-Ti-Mn composite oxide for highly efficient arsenic removal:preparation and performance evaluation[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2019,561:364-372.
[16]ZHOU C D,HAN C Y,MIN X Z,et al.Simultaneous adsorption of As(V) and Cr(VI) by zeolite supporting sulfide nanoscale zero-valent iron:competitive reaction,affinity and removal mechanism[J].Journal of Molecular Liquids,2021,338:116-619.
[17]WANG D F,YI C,XU M,et al.Adsorption of As(III) and As(V) by using the Fenton reaction modified kapok fiber[J].Journal of Environmental Chemical Engineering,2021(9):105-918.
[18]LIU T,WU K,ZENG L H.Removal of phosphorus by a composite metal oxide adsorbent derived from manganese ore tailings[J].Journal of Hazardous Materials,2012(217/218):29-35.
[19]DU X L,YU Z Y,ZHU Y J.Cr(VI) adsorption from aqueous solution and its reactions behavior on the surfaces of granular Fe-Mn binary oxides[J].Environmental Progress &Sustainable Energy.2019,38(s1):176-184.
[20]KANG D J,YU X L,TONG S R,et al.Performance and mechanism of Mg/Fe layered double hydroxides for fluoride and arsenate removal from aqueous solution[J].Chemical Engineering Journal,2013,228:731-740.