ISSN 1008-5548

CN 37-1316/TU

2022年28卷  第5期
<返回第5期

利用菱镁矿制备非晶态硅酸镁

Preparation of magnesium silicate from magnesite

王琪浩1,王余莲1,薛 铭2,林永瑾1,朱益斌1,张 俊1,刘珈伊1,时天骄1,田伊笛1,李 闯1,苏德生3,袁志刚1

(1.沈阳理工大学 材料科学与工程学院,辽宁 沈阳 110159;2.东北大学 资源与土木工程学院,辽宁 沈阳 110819; 3.辽宁省超高功率石墨电极材料专业技术创新中心,辽宁 丹东 118000)


DOI:10.13732/j.issn.1008-5548.2022.05.015

收稿日期: 2022-03-01, 修回日期:2022-05-09,在线出版时间:2022-08-19 12:52。

基金项目:国家自然科学基金项目,编号:51804200;沈阳理工大学大学生创新创业训练计划项目,编号:202110144113。

第一作者简介:王琪浩(1997—),男,硕士研究生,研究方向为材料制备。E-mail:wqh3945199452021@163.com。

通信作者简介:王余莲(1986—),女,副教授,博士,主要研究方向为矿物材料制备及应用。E-mail:ylwang0908@163.com。


摘要:以菱镁矿为原料,经过煅烧、水化、碳酸化等方法制备的重镁水为镁源,浓度为1 mol/L五水合硅酸钠溶液为硅源,经沉淀反应制得硅酸镁。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、全自动比表面积检测、傅里叶变换红外光谱仪(FTIR)等研究镁、硅物质的量比、体系pH、反应时间、煅烧时间对产物物相组成、比表面积的影响。结果表明:镁、硅物质的量比为1∶1.5,体系pH为10.0,反应时间为65 min,不进行煅烧,可获得比表面积为167.3 m2/g的不规则块状、颗粒状非晶态硅酸镁。

关键词:菱镁矿;重镁水;硅酸镁;非晶态;比表面积

Abstract:Using magnesite as raw material, magnesium bicarbonate solution obtained by calcination, hydration and carbonation as the magnesium source and 1 mol/L sodium silicate pentahydrate solution as the silicon source, magnesium silicate was prepared by precipitation reaction. The effects of the mole ratio of magnesium to silicon, pH, reaction time, calcination time on the composition phase and specific surface area of magnesium silicate were studied by X-ray diffractometer(XRD)、scanning electron microscope(SEM)、 automatic measurement of specific surface area method and Fourier transform infra-red(FTIR). The results show that when mole ratio of magnesium to silicon is 1∶1.5, the pH of the mixed solution is 10.0, reaction time is 65 min, no calcination, the irregular bulk and granular amorphous magnesium silicate with specific surface area of 167.3 m2/g is obtained.

Keywords:magnesite; magnesium bicarbonate solution; magnesium silicate; amorphous phase; specific surface area


参考文献(References):

[1]孙鹏慧,李景朝,肖克炎,等.中国菱镁矿成矿地质特征与资源潜力[J].地学前缘,2018,25(3):159-171.

[2]胡庆福,李保林,李国庭.医用三硅酸镁的制备[J].无机盐工业,1995(4):33-34.

[3]ZHU G,LI H,WANG X,et al.Synthesis of calcium silicate hydrate in highly alkaline system[J].Journal of the American Ceramic Society,2016,99(8):2778-2785.

[4]赵春燕.多孔硅酸镁的制备及吸附性能研究[D].北京:北京化工大学,2018.

[5]HUA R,CHAO Z,ZHAO H L,et al.Emodin-loaded magnesium silicate hollow nanocarriers for anti-angiogenesis treatment through inhibiting VEGF[J].International Journal of Molecular Sciences,2014,15(9):16936-16948.

[6]高慧慧,邓小龙,黄金昭,等.生物硅源制备花状硅酸镁及其对放射性核素U(Ⅵ)的去除[J].中国科学:化学,2019,49(1):103-112.

[7]李传亮,李旭娣.利用高低温盐联产三硅酸镁及无水硫酸钠的试验研究[J].海湖盐与化工,2000(1):3-5.

[8]冯凌,李敏,刘国强,等.共沉淀法合成三硅酸镁及其微观分析[J].北京科技大学学报,2009,12:1600-1604.

[9]张丽丽.硅镁胶的合成与吸附性能[D].青岛:中国海洋大学,2011.

[10]WANG W,TIAN G,ZHANG Z,et al.A simple hydrothermal approach to modify palygorskite for high-efficient adsorption of methylene blue and Cu(II) ions[J].Chemical Engineering Journal,2015,265:228-238.

[11]CLOWUTIMON W,KITCHAIYA P,ASSAWASAENGRAT P,et al.Adsorption of free fatty acid from crude palm oil on magnesium silicate derived from rice husk[J].Engineering Journal,2011,15(3):15-26.

[12]方娴韵,俞淑佳,陈旖婷,等.硅酸镁纳米空心球的制备及对蛋白质负载和释放性能的研究[J].北京生物医学工程,2018,37(6):589-596.

[13]YANG J,ZHANG M,ZHANG Y,et al.Facile synthesis of magnetic magnesium silicate hollow nanotubes with high capacity for removal of methylene blue[J].Journal of Alloys and Compounds,2017,721:772-778.

[14]LI Q,LU Q,ZHANG J,et al.Facile mesoporous template-assisted hydrothermal synthesis of ordered mesoporous magnesium silicate as an efficient adsorbent[J].Applied Surface Science,2016,360:889-895.

[15]毛丽莉,王海增,汪清.硅酸镁成型吸附剂的制备及其对亚甲基蓝的吸附研究[J].硅酸盐通报,2013,32(11):2178-2182.

[16]杜国勇,张洪铭,李艳,等.硅酸镁的改性及其对稠油污水中有机物的吸附[J].功能材料,2017,48(6):6013-6017.

[17]王余莲,印万忠,李昂,等.热分解法制备三水碳酸镁晶须及其结晶动力学研究[J].矿产保护与利用,2018,6:107-113.

[18]王余莲,印万忠,张夏翔,等.大长径比三水碳酸镁晶须的制备及晶体生长机理[J].硅酸盐学报,2018,46(7):938-945.

[19]张强,何宏平,陶奇.菱镁矿煅烧参数优化及其产物水化动力学解析[J].中国有色金属学报,2016,26(3):699-706.

[20]时天骄,王余莲,刘珈伊,等.共沉淀法制备三水碳酸镁晶体及生长机理[J].中国粉体技术,2021,27(5):120-127.

[21]刘珈伊,王余莲,时天骄,等.无水乙醇辅助低温直接法制备碱式碳酸镁晶体[J].中国粉体技术,2021,27(1):41-49.