吕圣男a,刘雪东a,b,宣 颖a
(常州大学 a. 机械与轨道交通学院;b. 江苏省绿色过程装备重点实验室,江苏 常州 213164)
DOI:10.13732/j.issn.1008-5548.2022.05.012
收稿日期: 2022-03-02, 修回日期:2022-06-15,在线出版时间:2022-08-09 13:55。
基金项目:中国石化股份有限公司重点研发计划项目,编号:417002-2。
第一作者简介:吕圣男(1997—),女,硕士研究生,研究方向为过程强化与装备优化。E-mail:lsn2727@163.com。
通信作者简介:刘雪东(1965—),男,教授,博士生导师,研究方向为能源化工装备创新与优化、粉体工程设备与技术。E-mail:xdliu_65@126.com。
摘要:采用离散单元法数值模拟方法,研究机械式粉体混合机工作过程中搅拌功率、扭矩的变化规律;选用桨叶直径为160 mm的机械式粉体混合机,数值模拟转速对扭矩、功率影响,验证数值模拟的准确性;模拟研究颗粒尺度、形状和分布对搅拌功率、扭矩的影响。结果表明:在颗粒充填体积分数为35%、搅拌转速分别为100、 200、 300、 400、 500 r/min的条件下,搅拌扭矩、功率均随颗粒平均粒径的减小而增大;对于任意粒径的颗粒,搅拌功率均随转速增大呈线性增大,搅拌功率变化的幅度随粒径减小而增大;同一粒径尺度下,颗粒的分布对搅拌扭矩影响较小;在填料高度相同条件下,搅拌功率、扭矩随颗粒球形度的减小呈降低的趋势;对于外形接近或形状相同的颗粒,搅拌扭矩随球形度的减小呈降低的趋势。
关键词:颗粒尺度;颗粒形状;功率;扭矩;离散单元法
Abstract:Discrete element method was used to simulate the variation of mixing power and torque in working process of mechanical powder mixer. Using a mechanical powder mixer with a blade diameter of 160 mm, the numerical simulation of the influence of rotating speed on torque and power was carried out to verify the accuracy of the numerical simulation. The effects of particle size, particle shape and particle distribution on stirring power and torque were simulated. The results show that when the particle filling amount is 35% and the stirring speed is 100, 200, 300, 400 and 500 r/min, the stirring torque and power increase with the decreasing of average particle size. For particles with any particle size, the stirring power increases linearly with the increasing of rotating speed, and the variation of stirring power increases with the decreasing of particle size. Under the same particle size scale, the type of particles has little effect on the stirring torque and under the same packing height, the stirring power and torque decrease with the decreasing of sphericity. For particles with similar shape or the same shape, the stirring torque decrease with the decreasing of sphericity.
Keywords:particle size; particle shape; power; torque; discrete element method
参考文献(References):
[1]CLEARY P W.Industrial particle flow modelling using discrete element method[J].Engineering Computations,2009,26(6):698-743.
[2]HASSANPOUR A,TAN H,BAYLY A,et al.Analysis of particle motion in a paddle mixer using discrete element method (DEM)[J].Powder Technology,2010,206(1):189-194.
[3]曹鑫鑫,徐超.基于EDEM的稳定土搅拌机搅拌装置的优化研究[J].建设机械技术与管理,2016,29(3):62-64.
[4]ROJEK J,LABRA C,SU O,et al.Comparative study of different discrete element models and evaluation of equivalent micromechanical parameters[J].International Journal of Solids and Structures,2012,49(13):1497-1517.
[5]NAKAMURA H,FUJII H,WATANO S.Scale-up of high shear mixer-granulator based on discrete element analysis[J].Powder Technology,2013,236:149-156.
[6]宣颖,刘雪东,周成奇,等.粉体混合过程及搅拌功率的DEM数值模拟和实验[J].化工进展,2021,40(7):3598-3607.
[7]LEKHAL A,CONWAY S L,GLASSER B J,et al.Characterization of granular flow of wet solids in a bladed mixer[J].AICHE Journal,2006,52(8):2757-2766.
[8]REMY B,CANTY T M,KHINAST J G,et al.Experiments and simulations of cohesionless particles with varying roughness in a bladed mixer[J].Chemical Engineering Science,2010,65(16):4557-4571.
[9]REMY B,KHINAST J G,GLASSER B J.Wet granular flows in a bladed mixer:experiments and simulations of monodisperse spheres[J].AICHE Journal,2012,58(11):3354-3369.
[10]CHANDRATILLEKE R,YU A,BRIDGWATER J.Flow and mixing of cohesive particles in a vertical bladed mixer[J].Industrial &Engineering Chemistry Research,2014,53(10):4119-4130.
[11]ESCOTET-ESPINOZA M S,FOSTER C J,IERAPETRITOU M.Discrete element modeling (DEM) for mixing of cohesive solids in rotating cylinders[J].Powder Technology,2018,335:124-126.
[12]SIRAJ M S.Single-blade convective powder mixing:the effect of the blade shape and angle[J].Powder Technology,2014,267:289-301.
[13]张洪武,秦建敏.基于非线性接触本构的颗粒材料离散元数值模拟[J].岩土工程学报,2006,28(11):1964-1969.
[14]徐泳,孙其诚,张凌,等.颗粒离散元法研究进展[J].力学进展,2003,33(2):251-260.
[15]BAO Y Y,LI T C,WANG D F,et al.Discrete element method study of effects of the impeller configuration and operating conditions on particle mixing in a cylindrical mixer[J].Particuology,2020,49:146-158.
[16]孔亮,彭仁.颗粒形状对类砂土力学性质影响的颗粒流模拟[J].岩石力学与工程学报,2011,30(10):2112-2119.
[17]李远征,魏玉峰,雷壮,等.基于离散元法研究颗粒球度对粗粒土抗剪强度的影响[J].水资源与水工程学报,2019,30(4):225-232.
[18]陶贺,金保昇,钟文琪.非球形颗粒在移动床中流动特性的离散单元法直接数值模拟[J].中国电机工程学报,2010,30(23):78-83.