ISSN 1008-5548

CN 37-1316/TU

2022年28卷  第5期
<返回第5期

基于CFD-DEM的非球形颗粒水力输送数值模拟

Numerical simulation of hydraulic transport of non-spherical particles based on CFD-DEM

陈 伟,张 佩,孙永昌,武煜坤,郑诚林,徐止恒,李政权

(江西理工大学 江西省颗粒系统仿真与模拟重点实验室,江西 赣州 341000)


DOI:10.13732/j.issn.1008-5548.2022.05.011

收稿日期: 2022-04-15, 修回日期:2022-06-28,在线出版时间:2022-08-09 14:00。

基金项目:国家自然科学基金项目,编号:52130001;江西理工大学高层次人才科研启动项目,编号:JXXJBS17078。

第一作者简介:陈伟(1996—),男,硕士研究生,研究方向为水力输送模拟技术。E-mail:1159307457@qq.com。

通信作者简介:李政权(1982—),男,副教授,博士,硕士生导师,研究方向为多相流仿真模拟。E-mail:qqzhengquan@163.com。


摘要:使用计算流体力学(computational fluid dynamics, CFD)和离散元法(discrete element method, DEM)相耦合的数值模拟方法,在模型验证、网格无关性验证的基础上,研究水力输送非球形颗粒物料时90°弯管处的磨损情况;通过3种不同长径比颗粒输送过程中运动轨迹、流态、固体体积分布等研究管道磨损的内在机理。结果表明:在相同的条件下,颗粒长径比越大,管道弯头处的磨损区域面积越大,磨损越严重,弯头处的磨损率随中心角角度增大而增大,在70°~90°区间磨损率增大趋势更加明显,在90°处达到最大值;颗粒球形度不同时,三球颗粒的最大磨损率约是单球颗粒的2.4倍,弯头外拱处的磨损比内拱处的磨损严重;颗粒长径比改变时,大长径比颗粒离开弯头时更容易在管道顶部聚集,造成弯头磨损加剧,磨损面积增大。

关键词:计算流体力学;离散元法;弯管;水力输送;非球形颗粒;磨损

Abstract:Using the method of coupling computational fluid dynamics(CFD) and discrete element method(DEM), on the basis of model verification and grid-independent verification, the wear of 90° elbow when hydraulically conveying non-spherical granular materials was studied. The internal mechanism of pipeline wear was studied through the results of motion trajectory, flow state, and solid volume distribution during the transportation of particles with three different length-to-diameter ratios. The results show that under the same conditions, the larger the particle aspect ratio is, the larger the wear area and the more serious the wear. The wear rate at the elbow increases with the increasing of the central angle. The increasing trend of the wear rate in the range of 70°~90° is more obvious, and reaches the maximum value at 90°. When the particle sphericity is different, the maximum wear rate of the three-sphere combined particle is about 2.4 times that of the single-sphere particle, and the wear at the outer arch of the elbow is more serious than that at the inner arch. When the aspect ratio of particles changes, particles with large aspect ratios are more likely to gather at the top of the pipe when they leave the elbow, resulting in increased elbow wear and increased wear area.

Keywords:computational fluid dynamics; discrete element method; elbow; hydraulic transport; non-spherical particle; wear


参考文献(References):

[1]SOLNORDAL C B,WONG C Y,BOULANGER J.An experimental and numerical analysis of erosion caused by sand pneumatically conveyed through a standard pipe elbow [J].Wear,2015,336/337:43-57.

[2]PEREIRA G C,SOUZA F,MARTINSD.Numerical prediction of the erosion due to particles in elbows[J].Powder Technology,2014,261(7):105-117.

[3]JAFARI M,MANSOORI Z,SAFFAR AVVAL M,et al.Modeling and numerical investigation of erosion rate for turbulent two-phase gas-solid flow in horizontal pipes [J].Powder Technology,2014,267:362-370.

[4]ZHANG Y,REUTERFORS E P,MCLAURY B S,et al.Comparison of computed and measured particle velocities and erosion in water and air flows[J].Wear,2007,263(1/2/3/4/5/6):330-338.

[5]BITTER J.A study of erosion phenomena:part 1[J].Wear,1963,6(1):5-21.

[6]HUTCHINGS I M,WINTER R E.Particle erosion of ductile metals:a mechanism of material removal[J].Wear,1974,27(1):121-128.

[7]冯少华,贾文广.水平旋转管道堵塞坍塌特性的CFD-DEM模拟[J].中国粉体技术,2020,26(6):37-44.

[8]彭丽,柳冠青,董方,等.基于CFD-DPM的旋风分离器结构设计优化[J].中国粉体技术,2021,27(2):63-73.

[9]赖莉莹,孙永昌,黎晴晴,等.搅拌釜操作和结构参数对颗粒混合性能影响的模拟研究[J].江西冶金,2021,41(2):10-19.

[10]李政权,于建群,张佩,等.非球形DEM数值模拟在条播机械中的应用[J].江西理工大学学报,2019,40(5):72-79.

[11]DARIHAKI F,ZHANG J,VIEIRA R E,et al.The near-wall treatment for solid particle erosion calculations with CFD under gas and liquid flow conditions in elbows [J].Advanced Powder Technology,2021,32(5):1663-1676.

[12]CHEN X,MCLAURY B S,SHIRAZI S A.Numerical and experimental investigation of the relative erosion severity between plugged tees and elbows in dilute gas/solid two-phase flow[J].Wear,2006,261(7/8):715-729.

[13]CHEN X,MCLAURY B S,SHIRAZI S A.Effects of applying a stochastic rebound model in erosion prediction of elbow and plugged tee[C]//ASME,Fluids Engineering Division Meeting,Montreal,Canada,2002.

[14]GRANT G,TABAKOFF W.Erosion prediction in turbomachinery resulting from environmental solid particles[J].Journal of Aircraft,2012,12(5):471-478.

[15]DUARTE C A R,SOUZA F J D,SANTOS V F D.Mitigating elbow erosion with a vortex chamber [J].Powder Technology,2016,288:6-25.

[16]ZAHEDI P,KARIMI S,MAHDAVI M,et al.Parametric analysis of erosion in 90 degree and long radius bends[C]// Fluid Engineering Division Summer Meeting.Washington,USA,2016.

[17]ZHANG J X,BAI Y Q,KANG J,et al.Failure analysis and erosion prediction of tee junction in fracturing operation [J].Journal of Loss Prevention in the Process Industries,2017,46:94-107.

[18]BLANCHARD D J,GRIFFITH P,RABINOWICZ E.Erosion of a pipe bend by solid particles entrained in water[J].Journal of Engineering for Industry,1984,106(3):213.

[19]WOOD R,JONES T F,GANESHALINGAM J,et al.Comparison of predicted and experimental erosion estimates in slurry ducts[J].Wear,2004,256(9):937-947.

[20]毕大鹏,张晋玲,谢文选,等.水平管稀相气力输送气-固速度关系的实验研究[J].中国粉体技术,2020,26(2):1-6.

[21]LI Z Q,ZHANG P,SUN Y C,et al.Discrete particle simulation of gas-solid flow in air-blowing seed metering device[J].Computer Modeling in Engineering &Sciences,2021,127(3):1119-1132.

[22]CHEN X,MCLAURY B S,SHIRAZI S A.Application and experimental validation of a computational fluid dynamics (CFD)-based erosion prediction model in elbows and plugged tees[J].Computers &Fluids,2004,33(10):1251-1272.

[23]KUANG S B,LI K,YU A B.CFD-DEM simulation of large-scale dilute-phase pneumatic conveying system[J].Industrial &Engineering Chemistry Research,2020,59(9):4150-4160.

[24]BILAL F S,SEDREZ T A,SHIRAZI S A.Experimental and CFD investigations of 45 and 90 degrees bends and various elbow curvature radii effects on solid particle erosion[J].Wear,2021,476:203646.