ISSN 1008-5548

CN 37-1316/TU

2022年28卷  第5期
<返回第5期

基于BOBYQA算法毛细管电极结构优化

Optimization on capillary electrode design by BOBYQA algorithm

李江涛1,2,孙 健3,李晓光3,刘岳强3,郑 浩3,张祥雷1,宁 辉3,李子瑞2

(1.温州大学 机电工程学院,浙江 温州 325035;2.河北工业大学 机械工程学院,天津 300401; 3.丹东百特仪器有限公司,辽宁 丹东 118009)


DOI:10.13732/j.issn.1008-5548.2022.05.003

收稿日期: 2022-02-22, 修回日期:2022-04-18,在线出版时间:2022-07-12 14:46。

基金项目:国家自然科学基金项目,编号:12072100。

第一作者简介:李江涛(1996—),男,硕士研究生,研究方向为纳米Zeta电位仪多物理场仿真及优化。E-mail:1738144236@qq.com。

通信作者简介:宁辉 (1978—),男,博士,研究方向为胶体物理和分析仪器研制。E-mail:hui.ning@bettersize.com。


摘要:为了研究电泳光散射技术测试Zeta电位过程中由于毛细管电极结构设计不合理造成的场强不均匀,进而导致Zeta电位测试结果标准偏差较大的问题,采用有限元软件对毛细管电极的电场分布进行模拟,基于梯度自由优化(BOBYQA)算法对毛细管电极结构其进行优化改进,并通过测试结果进行验证。结果表明:利用BOBYQA算法可以有效提高毛细管电极的设计的合理性,降低检测过程中检测位置对于Zeta电位结果的影响。得到场强分布最优时对应的内外径比例因子的毛细管内部结构,经试验验证,优化后毛细管电极内标样Zeta电位受探测位置的影响较小,均在标准范围内。

关键词:毛细管电极;电场匀性优化;梯度自由优化算法

Abstract:In order to study the problem of large standard deviation of Zeta potential test results due to the unreasonable design of the capillary electrode structure in the process of testing Zeta potential by electrophoretic light scattering technology, the electric field distribution of the capillary electrode was simulated by finite element software. Bound optimization by quadratic approximation(BOBYQA) algorithm was used to optimize the capillary electrode structure. The results show that BOBYQA algorithm can effectively improve the rationality of the design of the capillary electrode, and reduce the influence of the detection position on Zeta potential results during the detection process. The internal structure of the capillary with the proportional factor of the inner and outer diameters corresponding to the optimal field intensity distribution is obtained.The experimental results show that Zeta potential of the standard sample in the optimized capillary electrode is less affected by the detection position and is within the standard range.

Keywords:capillary electrode; uneven electric field; bound optimization by quadratic approximation algorithm


参考文献(References):

[1]吕思瑶,朱登兆,鲍云翔,等.大豆分离蛋白与染料木素共价交联对蛋白表征和结构的影响[J/OL].食品科学:1-12[2021-12-15].https://kns-cnki-net.webvpn.wzu.edu.cn/kcms/detail/11.2206.TS.20211015.2005.002.html.

[2]陈雅琪,陈玲,雷芬芬,等.南瓜籽油Pickering乳液的制备及其稳定性研究[J].粮食与油脂,2021,34(11):52-56.

[3]童志明,李亚兵,黄茗,等.井下作业返排残液对原油破乳脱水的影响及破乳剂筛选[J].化学与生物工程,2021,38(11):43-49.

[4]王市委,杨光祥,石开仪.低阶煤浮选颗粒间黏附作用研究[J].矿业研究与开发,2021,41(10):142-146.

[5]王智巧,马杰,陈雅丽,等.不同环境条件下水铁矿和针铁矿纳米颗粒稳定性[J].环境科学,2020,41(5):2292-2300.

[6]杜晓丽,刘殿威,崔申申.径流入渗土壤胶体释放对重金属截留的影响[J].中国环境科学,2022,42(3):1278-1286.

[7]杨娟,尚曙玉,贾安,等.木犀草素固体脂质纳米粒的制备及其体内药动学研究[J].中成药,2021,43(9):2281-2286.

[8]汪琼卉,薛学鑫,刘芸雅,等.艾塞那肽温敏型凝胶纳米粒鼻喷剂研究[J].中国药学杂志,2021,56(17):1406-1413.

[9]刘伟,张珊珊,Thomas J C,等.基于频谱细化算法的电泳光散射Zeta电位测量方法[J].光学学报,2017,37(2):292-298.

[10]许任良.颗粒悬浊液的Zeta电位特性[C]//中国建筑材料联合会粉体技术分会.2008国际粉体技术与应用论坛暨全国粉体产品与设备应用技术交流大会论文集.北京:中国建筑材料联合会,2008:18-19.

[11]秦福元.基于相位分析光散射的Zeta电位测量研究[D].淄博:山东理工大学,2018.

[12]XU R.Particle characterization:light scattering methods[J].China Particuology,2003,1(6):271-271.

[13]黄桂琼,邱健,韩鹏,等.U型样品池中电场分布仿真及其对Zeta电位测量的影响[J].中国粉体技术,2019,25(4):26-32.

[14]HUANG G,XU B,QIU J,et al.Symmetric electrophoretic light scattering for determination of the zeta potential of colloidal systems[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,587:124339.

[15]WANG C F,SONG Y X,PAN X X.Electrokinetic-vortex formation near a two-part cylinder with same-sign zeta potential in a straight microchannel[J].Electrophoresis,2020,41(10/11):793-801.

[16]吴新杰,许超,徐明达,等.基于BOBYQA算法的EMT传感器结构优化研究[C]//中共沈阳市委,沈阳市人民政府.第十八届沈阳科学学术年会论文集.沈阳:沈阳市科学技术协会,2021:425-430.

[17]POWELL M J D.The BOBYQA algorithm for bound constrained optimization without derivatives[J/OL].NA Report,2009(6):1-39[2022-02-01].http://www6.cityu.edu.hk/rcms/publications/preprint26.pdf.

[18]唐晟,赵耀华,刁彦华,等.基于BOBYQA算法的微小通道热沉优化设计[J].北京工业大学学报,2018,44(6):940-947.