佟 钰,闫海敏,王昭宁,丁向群,万 晔
(沈阳建筑大学 材料科学与工程学院,辽宁 沈阳 110168)
DOI:10.13732/j.issn.1008-5548.2022.05.002
收稿日期: 2022-02-09, 修回日期:2022-04-20。
基金项目:辽宁省“兴辽英才计划”项目,编号:XLYC2002005。
第一作者简介:佟钰(1972—),男,副教授,博士,研究方向为新型建筑材料的制备与应用。E-mail:tong_yu123@hotmail.com。
摘要:在抗渗混凝土优化配比的基础上,采用纳米二氧化硅部分取代硅灰,考察纳米二氧化硅粒径和掺量对水泥砂浆抗压强度和抗氯离子渗透性能的影响规律。结果表明:萘系减水剂与纳米二氧化硅相容性更好,更有利于纳米二氧化硅在水悬浮体系中的均匀分散;随着纳米二氧化硅粒径减小或掺量的增加,水泥砂浆各龄期的抗压强度呈现先增大后减小的趋势,而抗氯离子渗透实验得到的6 h电通量则先减小后增大。纳米二氧化硅能够改善水泥砂浆的内部结构,增加结构的致密性,但粒径过小或掺量过高会因分散性变差而导致力学强度与密实性下降。
关键词:纳米二氧化硅;水泥砂浆;抗压强度;密实度
Abstract:Nano-silica particles in different size were used to partially replace silica fume in the optimized mixing ratio of impermeable concrete. Detailed investigations were carried out to reveal the contribution of the particle size and content of nano-silica on the compressive strength and chloride ion penetration resistance of the as-prepared cement mortar. The results show that the naphthalene-based water reducing agent has better compatibility with nano-silica to realize the uniform dispersion of nano-silica in water-based suspension systems. As the particle size of nano-silica decreases or the amount increases, the compressive strength of cement mortar at each age shows a trend of first increasing and then decreasing, while the 6 h electric flux obtained from the anti-chloride ion penetration measurement first decreases and then increase. Nano-silica can improve the internal structure of cement mortar and increase the compactness of the structure. However, if the particle size is too small or the content is too high, the performance of cement mortar decrease apparently due to the poor dispersion of silica nanoparticles.
Keywords:nano-silica; cement mortar; compressive strength; compactness
参考文献(References):
[1]毛锦伟,宋伟炜.纳米SiO2对抗渗混凝土性能的影响研究[J].江苏工程职业技术学院学报,2020,20(2):17-20.
[2]范玉辉,牛海成,张向冈.纳米SiO2改性再生混凝土试验研究[J].混凝土,2017(7):92-95.
[3]COLLODETTI G,GLEIZE P J P,MONTEIRO P J M.Exploring the potential of siloxane surface modified nano-SiO2 to improve the Portland cement pastes hydration properties[J].Construct Build Mater,2014,54:99-105.
[4]TOBON J I,PAYA J,RESTREPO O J.Study of durability of Portland cement mortars blended with silica nanoparticles[J].Construct Build Mater,2015,80:92-97.
[5]黄春龙,王栋民,田红伟.纳米二氧化硅影响水泥基材料流动性的研究综述[J].材料导报,2018,32(增刊1):458-461,465.
[6]徐晶,王先志.纳米二氧化硅对混凝土界面过渡区的改性机制及其多尺度模型[J].硅酸盐学报,2018,46(8):1053-1058.
[7]陈刚,高丹盈,王东,等.钢纤维纳米SiO2混凝土强度的试验研究[J].河北工业大学学报,2014,43(6):77-80.
[8]RONG Z D,SUN W,XIAO H J,et al.Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites[J].Cement Concrete Composites,2015,56:25-31.
[9]徐圣楠.纳米SiO2内生成对水泥基材料的作用及机理研究[D].北京:中国矿业大学(北京),2019.
[10]KHASHAYAR E,JAVAD D M,MOHAMMAD Z,et al.A review of the impact of micro-and nanoparticles on freeze-thaw durability of hardened concrete:Mechanism perspective[J].Construct Build Mater,2018,186:1105-1113.
[11]王衍升.纳米材料协同硅灰对混凝土抗渗性能的影响[D].济南:济南大学,2018.
[12]中华人民共和国住房和城乡建设部.建筑砂浆基本性能试验方法标准:JGJ/T 70—2009[S].北京:中国建筑工业出版社,2009.
[13]中华人民共和国住房和城乡建设部.普通混凝土长期性能和耐久性能试验方法标准:GB/T 50082—2009[S].北京:中国建筑工业出版社,2009.
[14]中国建筑科学研究院.混凝土耐久性检验评定标准:JGJ/T 193—2009[S].北京:中国建筑工业出版社,2010.
[15]张峰领.纳尺度颗粒对水泥基材料力学性能的影响特性及机制[D].哈尔滨:哈尔滨工业大学,2016.
[16]MENG T,HONG Y,WEI H,et al.Effect of nano-SiO2 with different particle size on the hydration kinetics of cement[J].Thermochemica Acta,2019,675:127-133.
[17]HORSZCZARUK E,MIJOWSKA E,CENDROWSKI K,et al.Effect of incorporation route on dispersion of mesoporous silica nanospheres in cement mortar[J].Construct Build Mater,2014,66:418-421.
[18]NILI M,EHSANI A.Investigating the effect of the cement paste and transition zone on strength development of concrete containing nanosilica and silica fume[J].Mater Design,2015,75(6):174-183.
[19]GHAFARI E,COSTA H,JULIO E,et al.The effect of nanosilica addition on flowability,strength and transport properties of ultra high performance concrete[J].Mater Design,2014,59(7):1-9.