柳坤鹏, 胡金能, 刘贺峻, 杨凯娜, 姜海波, 李春忠
(华东理工大学材料科学与工程学院; 上海多级结构纳米材料工程技术研究中心, 上海200237)
DOI:10.13732/j.issn.1008-5548.2022.06.015
收稿日期: 2022-06-23, 修回日期:2022-10-17,在线出版时间:2022-11-01。
基金项目:国家自然科学基金项目,编号:21838003,91834301;上海市优秀学术带头人计划项目,编号:19XD1401400;中央高校基本
科研业务费专项资金资助项目,编号:222201718002。
第一作者简介:柳坤鹏(1998—),男,硕士研究生,研究方向为电气石及其负离子释放性能。E-mail: 920315233@qq.com。
通信作者简介:姜海波(1972—),男,副研究员,博士,硕士生导师,研究方向为新型纳米材料合成、结构调控和过程放大等。E-mail:jianghaibo@ecust.edu.cn。
摘要:综述电气石的释放负离子、自发极化、远红外辐射等特性,总结在释放负离子、活化水、远红外辐射、催化、生态环境保护等领域的应用研究进展。提出制备高负离子释放量的应用产品主要是通过掺杂改性电气石和小粒径电气石的方式;提升电气石远红外辐射率的主要方法为掺杂氧化铈复合;电气石与催化材料复合可提升催化性能;电气石及其复合功能材料具有天然的市场竞争优势和良好的开发前景;电气石释放负离子的机理仍需要进一步研究,并明确电气石结构与性能之间的关系;在环保和催化领域需要进一步研究不同类型的电气石的性能。
关键词:电气石;自发极化;负离子;活化水;远红外辐射;催化;生态环境
Abstract:The characteristics of tourmaline such as releasing negative ions, spontaneous polarization and far-infrared radiation were reviewed. The application and research progress in the fields of negative ion release, activated water, far-infrared radiation, catalysis and ecological environment protection were summarized. The results show that the application products with high negative ion release are mainly doped with modified tourmaline and tourmaline with small particle size. The main way to improve the far infrared emissivity of tourmaline is doped with cerium oxide. The composite of tourmaline and catalytic materials can improve the catalytic performance. Tourmaline and its composite functional materials have natural market competitive advantages and good development prospects. The mechanism of tourmaline releasing negative ions still needs to be further studied to clarify the relationship between its structure and performance. The performance of different types of tourmaline needs to be further studied in the field of environmental protection and catalysis.
Keywords:tourmaline; spontaneous polarization; negative ion; activated water; far-infrared radiation; catalysis; ecological environment
参考文献(References):
[1]盖兴慧. 稀土复合对电气石释放负离子及红外辐射性能的影响研究[D]. 北京: 中国地质大学(北京), 2018.
[2]HENRY D J, NOVAK M, HAWTHORNE F C, et al. Nomenclature of the tourmaline-supergroup minerals[J]. American Mineralogist, 2015, 96(5/6): 895-913.
[3]刘权, 胡应模, 侯春燕, 等. 电气石类负离子释放材料的研究进展[J]. 化工新型材料, 2018, 46(4): 9-11, 15.
[4]ZHAO J J, ZHANG L, XU A G, et al. Curative effect of low load aerobic exercise in combination with inhalation of air negative oxygen ion on occupational patient with cotton pneumoconiosis[J]. International Journal of Clinical and Experimental Medicine, 2016, 9(10): 20085-20089.
[5]MA M, SONG Q H, XU R M, et al. Treatment effect of the method of Tai Chi exercise in combination with inhalation of air negative oxygen ions on hyperlipidemia[J]. International Journal of Clinical and Experimental Medicine, 2014, 7(8): 2309-2313.
[6]FLETCHER L A, GAUNT L F, BEGGS C B, et al. Bactericidal action of positive and negative ions in air[J]. BMC Microbiology, 2007, 7(1): 1-9.
[7]CHEN C Y,YAO Y,YONG-WEI W U, et al. Preparation and antibacterial properties of negative ion coatings[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2007, 4(6): 171-172.
[8]SHAVLOV A V, DZHUMANDZHI V A,YAKOVENKO A A. Charge of water droplets during evaporation and condensation[J]. Journal of Aerosol Science, 2018, 123: 17-26.
[9]王薇. 空气负离子浓度分布特征及其与环境因子的关系[J]. 生态环境学报, 2014, 23(6): 979-984.
[10]HUANG X, WANG Y J, DI Y H. Experimental study of wool fiber on purification of indoor air[J]. Textile Research Journal, 2007, 77(12): 946-950.
[11]王淑娟, 王芳, 郭俊刚, 等. 森林空气负离子及其主要影响因子的研究进展[J]. 内蒙古农业大学学报(自然科学版), 2008, 29(1): 243-247.
[12]蒙晋佳, 张燕. 地面上的空气负离子主要来源于植物的尖端放电[J]. 环境科学与技术, 2005, 28(1): 112-113, 120.
[13]展杰, 郝霄鹏, 刘宏, 等. 天然矿物功能晶体材料电气石的研究进展[J]. 功能材料, 2006(4): 524-527.
[14]邵长春. 负氧离子发生器[J]. 生物医学工程学杂志, 1984, 1(2): 46-48, 30.
[15]汤云晖. 电气石的表面吸附与电极反应研究[D]. 北京: 中国地质大学(北京), 2003.
[16]LAMEIRAS F S, NUNES E H M, LEAL M J. Backgrounds for the industrial use of black tourmaline based on its crystal structure characteristics[J]. Ferroelectrics, 2008, 377(1): 107-119.
[17]NAKAMURA T, KUBO T. Tourmaline group crystals reaction with water[J]. Ferroelectrics, 1992, 137(1): 13-31.
[18]WANG X, HONG S, LIAN H, et al. Photocatalytic degradation of surface-coated tourmaline-titanium dioxide for self-cleaning of formaldehyde emitted from furniture[J]. Journal of Hazardous Materials, 2021, 420: 126565.
[19]LIU J, QIN Y H, YUAN S, et al. Investigation on the mechanism of water activated via tourmaline powder[J]. Journal of Molecular Liquids, 2021, 332: 115854.
[20]WANG P, XU W Q, WANG T L, et al. New technology of preparation of TiO2/tourmaline by dry coated method and its application in coating[J]. Advanced Materials Research, 2012, 1916(557/558/559): 1727-1737.
[21]WANG C H, LI Y W, SUN X L, et al. Automobile exhaust-purifying performance of tourmaline-modified asphalt concrete[J]. Journal of Materials in Civil Engineering, 2017, 29(6): 04017004.
[22]HUANG G, CUI Z, ZHU P, et al. Modification of nano tourmaline surface treatment agent and its performance on negative ion release[J]. Computers,Materials and Continua, 2018, 57(1): 145-150.
[23]SAFAK S, KARACA E. Production and characterization of poly (ethylene terephthalate) nanofibrous mat including tourmaline additive[J]. Textile Research Journal, 2016, 86(15): 1651-1658.
[24]ZHANG J, DING H. Preparation and properties of negative ion functional cotton knitted fabric[J]. Journal of Engineered Fibers and Fabrics, 2021, 16: 30-33.
[25]HU Y, YANG X. The surface organic modification of tourmaline powder by Span-60 and its composite[J]. Applied Surface Science, 2012, 258(19): 7540-7545.
[26]HU Y, LI Y, LI M, et al. The preparation and characterization of tourmaline-containing functional copolymer p(VST/MMA/BA)[J]. Journal of Spectroscopy, 2018, 2018: 1-7.
[27]HU Z, SUN C. An study on preparation and utilization of tourmaline from tailings of an iron-ore processing plant[J]. Procedia Environmental Sciences, 2016, 31: 153-161.
[28]MIRA C, DIAZ-GARCIA P, MONTAVA-SEGUI I, et al. Influence of the size of tourmaline particles applied on polyester fabric on the release of negative ions[J]. Annals of the University of Oradea: Fascicle of Textiles, Leatherwork, 2020, 21(2): 53-56.
[29]MENG J, GUO T, SRINIVASAKANNAN C, et al. High temperature phase transition behavior of schorl particles modified with rare earth[J]. Ceramics International, 2020, 46(7): 8910-8917.
[30]WANG F, ZHANG X, LIANG J, et al. Phase transformation and microstructural evolution of black tourmaline mineral powders during heating and cooling processes[J]. Ceramics International, 2018, 44(11): 13253-13258.
[31]LUO Y, CHEN Q, WANG C, et al. Preparation and improved negative ion release of graphene/tourmaline composite[J]. Materials Research Express, 2019, 6(5): 055507.
[32]YUAN S, QIN Y, LIU J, et al.Enhancement and mechanism of tourmaline on activating water by high-voltage pulsed discharge pre-treatment[J]. Desalination and Water Treatment, 2021, 210: 201-209.
[33]ZHU D, XU A, LIANG J. Effect of morphology of dispersed nano-CeO2 on far infrared emission property of natural tourmaline[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(11): 9594-9599.
[34]GUO B, YANG L, LI W, et al. Preparation method of Ce1-xZrxO2/tourmaline nanocomposite with high far-infrared emissivity and its mechanism[J]. Applied Physics A, 2016, 122(2): 1-7.
[35]GAO Z, LIANGJ, ZHANG H, et al. Strengthening mechanism of far-infrared radiation of tourmaline in iron-tailing ceramics[J]. Ceramics International, 2021, 47(18): 25214-25220.
[36]GUO T, FU H, WANG C, et al. Road performance and emission reduction effect of graphene/tourmaline-composite-modified asphalt[J]. Sustainability, 2021, 13(16): 8932.
[37]YANG X, YANG X, PENG Y, et al. Regulating the built-in electric field of BiOBr by a piezoelectric mineral tourmaline and the enhanced photocatalytic property[J]. Industrial and Engineering Chemistry Research, 2022, 61(4): 1704-1714.
[38]TZENG J H, WENG C H, YEN L T, et al. Inactivation of pathogens by visible light photocatalysis with nitrogen-doped TiO2 and tourmaline-nitrogen co-doped TiO2[J]. Separation and Purification Technology, 2021, 274: 118979.
[39]CHEN X F, JIAO C J. A photocatalytic mortar prepared by tourmaline and TiO2 treated recycled aggregates and its air-purifying performance[J]. Case Studies in Construction Materials, 2022, 16: e01073.
[40]ZHENG F, DONG F Q, LV Z Z, et al. A novel g-C3N4/tourmaline composites equipped with plasmonic MoO3-x to boost photocatalytic activity[J]. Colloid and Interface Science Communications, 2021, 43: 100434.
[41]HAO M, LI H, CUI L, et al. Higher photocatalytic removal of organic pollutants using pangolin-like composites made of 3-4 atomic layers of MoS2 nanosheets deposited on tourmaline[J]. Environmental Chemistry Letters, 2021, 19(5): 3573-3582.
[42]TZENG J H, WENG C H, CHANG C J, et al. N-Schorl TiO2 nanocomposite for visible-light photocatalysis deactivation yeast exemplified by candida albicans[J]. Chemical Engineering Journal, 2022, 435: 134294.
[43]LI J H, FAN L Z, LIAO L B. Electrodeposition of platinum on tourmaline and application as an electrocatalyst for oxidation of methanol[J]. Ionics (Kiel), 2010, 16(1): 33-38.
[44]LUO G, CHEN A, ZHU M, et al. Improving the electrocatalytic performance of Pd for formic acid electrooxidation by introducing tourmaline[J]. Electrochimica Acta, 2020, 360: 137023.
[45]HAN Y H, QIU S, MA F, et al. Short-term and long-term effects of tourmaline on activated sludge viability and performance[J]. Water, Air and Soil Pollution, 2017, 228(10): 1-9.
[46]LI W, ZHU J, LOU Y, et al. MnO2/tourmaline composites as efficient cathodic catalysts enhance bioelectroremediation of contaminated river sediment and shape biofilm microbiomes in sediment microbial fuel cells[J]. Applied Catalysis B: Environmental, 2020, 278: 119331.
[47]LIU W X, ZHANG L, YANG Q L, et al. Highly efficient treatment of terephthalic acid wastewater by fenton-like combined biodegradation[J]. Desalination and Water Treatment, 2020, 182: 243-252.
[48]ZHU Y, QIU S, TANG W, et al. Sustainable Fe3+ reduction by Fe3O4@tourmaline in fenton-like system[J]. Chemical Engineering Journal, 2022, 437: 135480.
[49]XUE G, LUO X, SRINIVASAKANNAN C, et al. Effective removal of organic dye and heavy metal from wastewater by tourmaline/graphene oxide composite nano material[J]. Materials Research Express, 2019, 6(11): 115618.
[50]WANG C, CHEN Q, GUO T, et al. Environmental effects and enhancement mechanism of graphene/tourmaline composites[J]. Journal of Cleaner Production, 2020, 262: 121313.
[51]WANG C, CHEN Q, GUO T, et al. Preparation and adsorption properties of nano-graphene oxide/tourmaline composites[J]. Nanotechnology Reviews, 2021, 10(1): 1812-1826.