李家皓1, 韦 能1, 李金龙1, Sabereh Nazari1, 何亚群1,2
(1. 中国矿业大学化工学院, 江苏徐州221116; 2. 恒创睿能环保科技有限公司, 广东惠州516200)
DOI:10.13732/j.issn.1008-5548.2022.06.012
收稿日期: 2022-06-04, 修回日期:2022-10-13,在线出版时间:2022-11-01。
基金项目: 广东省重点专项研发计划项目,编号:2020B090919003。
第一作者简介: 李家皓(1997—),男,硕士研究生,研究方向为矿业工程。E-mail: Ts21040077a31@cumt.edu.cn。
通信作者简介: 何亚群(1963—),男,教授,博士,博士生导师,研究方向为矿物加工工程。E-mail: yqhe@cumt.edu.cn。
摘要:为实现失效磷酸铁锂(LiFePO4)电池正极材料的回收和再利用,采用仪器分析和表征方法,研究LiFePO4正极材料失效前、后的理化性质。结果表明:失效后LiFePO4电池正极材料中含有大量的Fe、 P、 Ni,少量的Cu、 Co和微量的F元素,晶相结构未发生明显改变,Fe主要以Fe2+和Fe3+形式存在;LiFePO4电池正极片失效后表面呈现不规则的波浪状缺陷和坑状凹陷;在失效过程中,LiFePO4正极材料颗粒表面产生裂纹,破碎后形成的小颗粒变得黏连、杂乱和团聚,降低正极材料的电化学性能;失效后颗粒表面出现的约20 nm厚的PVDF膜结构影响颗粒表面的疏水性,降低浮选效率。
关键词:磷酸铁锂电池;正极材料;失效电池;理化性质
Abstract:In order to recover and reuse the cathode material of lithium iron phosphate(LiFePO4) battery, physicochemical properties of LiFePO4 cathode material before and after failure were studied by instrumental analysis and characterization methods. The results show that the cathode material of LiFePO4 battery contains a large amount of Fe, P and Ni, a small amount of Cu and Co, and trace of F. The crystal structure of cathode material does not change significantly, and Fe mainly exists in the form of Fe2+ and Fe3+. Irregular wavy defects and pit-like depressions appear on the surface of cathode plate of failed LiFePO4 battery. During the failure process, cracks occur on the surface of LiFePO4 cathode material particles, and the small particles formed after crushing become adhesive, disorderly and agglomerate, which reduce the electrochemical performance of the cathode material. After the failure, the PVDF membrane with a thickness of about 20 nm appears on the particle surface, which affect the hydrophobicity of the particle surface and reduce the flotation efficiency.
Keywords:lithium iron phosphate battery; cathode material; failed battery; physicochemical properties
参考文献(References):
[1]JAI K, RANA R, NEIBER C D, JAEWON P, et al. Recent progress in sustainable recycling of LiFePO4-type lithium-ion batteries:strategies for highly selective lithium recovery[J]. Chemical Engineering Journal, 2022, 431: 133993.
[2]张伟刚, 何亚群, 张涛, 等. 废弃锂离子电池富钴粉体可浮性的改善[J]. 中国粉体技术, 2016, 22(1): 23-27.
[3]WALVEKAR H, BELTRAN H, SRIPAD S, et al. Implications of the electric vehicle manufacturers’ decision to mass adopt lithium-iron phosphate batteries[J]. IEEE Access, 2022, 10: 63834-63843.
[4]王韵珂, 延卫, 万邦隆, 等. 废旧锂电池磷酸铁锂正极材料回收工艺研究进展[J]. 云南化工, 2022, 49(6): 1-6.
[5]SHAO J Y, LI X R, WEUI J L, et al. Synthesis of iron phosphate and their composites for lithium/sodium ion batteries[J]. Advanced Sustainable Systems, 2018, 2: 1700154.
[6]JOEY C Y J, SUI P C, ZHANG J J. A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments[J]. Journal of Energy Storage, 2021, 35: 102217.
[7]CAO Z X, ZHU G S, ZHANG R R, et al. Biological phytic acid guided formation of monodisperse large-sized carbon LiFePO4/graphene composite microspheres for high-performance lithium-ion battery cathodes[J]. Chemical Engineering Journal, 2018, 351: 382-390.
[8]PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194.
[9]JIANG D P, ZHANG X J, LU S G, et al. Research on process of preparation and performance of iron phosphate as precusor of lithium iron phosphate[J]. Rare Metals, 2011, 30: 52-54.
[10]何栋. 磷酸铁锂电池的工作原理及其在通信基站中的应用[D]. 南京: 南京邮电大学, 2018.
[11]任冬燕, 李晶, 宋月丽. LiFePO4锂离子电池容量的衰减机制[J]. 中国粉体技术, 2013, 19(1): 68-71.
[12]NING G, HARAN B, POPOV B N. Capacity fade study of lithium-ion batteries cycled at high discharge rates[J]. J Power Sources, 2003, 117(1): 160-169.
[13]贺浩. 磷酸铁锂18650动力键锂离子电池失效机理及动态脱嵌锂键机理研究[D]. 长沙: 湖南大学, 2016.
[14]WU Y F, CHONG S K, LIU Y N, et al. Review on Li-insertion/extraction mechanisms of LiFePO4 cathode materials[J]. Chinese Journal of Structure Chemistry, 2018, 37(12): 2011-2023.
[15]FEDERICA F, MASSIMILIANA P, STEFANO P, et al. Lithium iron phosphate batteries recycling: an assessment of current status[J]. Critical Reviews in Environmental Science and Technology, 2021, 51: 2232-2259.
[16]JHA A K, JHA M K, KUMARI A, et al. Selective separation and recovery of cobalt from leach liquor of discarded Li-ion batteries using thiophosphinic extractant[J]. Sep Purif Technol, 2013, 104: 160-166.
[17]ZHU S, HE W Z, LI G M, et al. Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation[J]. Trans Nonferrous Met Soc China, 2012, 22(9): 2274-2281.
[18]ZHOU L F, YANG D R, DU T, et al. The current process for the recycling of spent lithium-ion batteries[J]. Frontiers in Chemistry, 2020, 12: 578044.
[19]原晓菲, 钟睿, 洪若瑜, 等. 等离子体法制备及改性石墨烯粉体的研究进展[J]. 中国粉体技术, 2021, 27(5): 134-140.
[20]梁力勃, 杨生龙, 罗茂枭, 等. 高温固相法再生废旧磷酸铁锂电池正极材料[J]. 矿冶工程, 2021, 41(3): 120-128.
[21]王子璇, 李俊成, 李金东, 等. 废磷酸铁锂正极材料资源化回收工艺[J]. 储能科学与技术, 2022, 11(1): 45-52.