ISSN 1008-5548

CN 37-1316/TU

2022年28卷  第6期
<返回第6期

大电流液固冷却充电模块系统设计

System design of high current liquid-solid cooling charging module

陈 熙1, 陈慧敏1, 程 林1, 张 倩1, 刘维新2, 陈春宇2

(1. 国网北京市电力公司 电力科学研究院, 北京100045; 2. 北京华商三优新能源科技有限公司, 北京101100)


DOI:10.13732/j.issn.1008-5548.2022.06.010

收稿日期: 2022-09-08, 修回日期:2022-09-13,在线出版时间:2022-11-01。

基金项目:国网北京市电力公司科技项目,编号:52022320006G。

第一作者简介:陈熙(1991—),男,硕士研究生,研究方向为电动汽车充电技术。E-mail: 792365259@qq.com。



摘要:基于液冷充电模块工作过程,分析充电模块发热原理,通过理论计算系统设计循环泵、管路、散热器和冷板等液冷充电桩关键部件;利用仿真分析散热冷板结构温度场,进行液冷充电模块冷板的结构优化设计;结合充电桩的应用场景和条件,冷却工质选择体积分数为56%的乙二醇水溶液作为液相,添加体积分数为3%的石墨烯粉体作为固相。结果表明:与市场上现有液冷模块进行对比,设计优化后的液冷模块散热效率提升约20%。研究充电设备的液固两相流散热系统,利用冷却工质循环和散热装置对充电设备进行散热,有利于提高设备的可靠性和使用年限。

关键词:液固两相流;液冷散热系统;仿真分析;冷板结构优化

Abstract:Based on the working process of the liquid cooling charging module, the heating principle of the charging module was analyzed. The key components of the liquid cooling charging pile, such as the circulation pump, the pipeline, the radiator and the cold plate were designed through the theoretical calculation system. The structural temperature field of the cooling cold plate was analyzed by simulation, and the structural optimization design of the cold plate of the liquid cooling charging module was carried out. Combined with the application scenarios and condition constraints of the charging pile, the cooling medium of 56% ethylene glycol aqueous solution was selected as the liquid phase, and 3% graphene powder was added as the solid phase. The results show that compared with the existing liquid cooling modules in the market, the heat dissipation efficiency of the optimized liquid cooling module increases by about 20%. Research on the liquid-solid two-phase flow heat dissipation system of the charging equipment, and using the cooling medium circulation and heat dissipation device to heat the charging equipment are conducive to improving the reliability and service life of the equipment.

Keywords:liquid-solid two-phase flow; liquid cooling cooling system; simulation analysis; optimization of cold plate structure


参考文献(References):

[1]CHUNNANOND K, APHORNRATANA S. Ejectors: applications in refrigeration technology[J]. Renewable and Sustainable Energy Reviews, 2004, 8(2): 129-155.

[2]SUN D W. Recent developments in the design theories and applications of ejectors: a review[J]. Journal of the Institute of Energy, 1995, 68(475): 65-79.

[3]宋波,吴冬. 基于Icepak的直流充电机水冷散热研究[J]. 中国电工网, 2019(21): 24-26.

[4]马超, 刘国鹏. 直流充电机散热性能数值分析及优化[J]. 电力科学与工程, 2020, 36(2): 42-47.

[5]宁献文, 徐侃, 王玉莹, 等. 嫦娥五号轻量化泵驱单相流体回路热总线设计及实现[J/OL]. 航空学报: 1-11[2022-08-31]. http://kns.cnki.net/kcms/detail/11.1929.V.20211009.1335.022.html.

[6]冯亚利, 黄胜利, 高长松, 等. 泵驱两相冷却系统设计及性能验证[J]. 电子机械工程, 2021, 37(5): 22-26.

[7]夏爽. 浸没式相变液冷服务器的数值模拟研究[D]. 济南: 山东大学, 2021.

[8]李斌. 服务器单相浸没式液冷数值模拟与优化[D]. 济南: 山东大学, 2021.

[9]董进喜, 杨明明, 赵亮. 电子设备液冷散热的冷却液热学性能分析[J]. 电子科技, 2013, 26(4): 106-109.

[10]WARRIER P, SATHYANARAYANA A, BAZDAR S, et al. Selection and evaluation of organosilicon coolants for direct immersion cooling of electronic systems[J]. Industrial & Engineering Chemistry Research, 2012, 51(31): 10517-10523.

[11]WU Z, CAO Z, PHAM A D, et al. Nucleate pool boiling heat transfer of acetone and HFE7200 on copper surfaces with nanoparticle coatings[J]. Energy Procedia, 2019, 158: 5872-5879.

[12]SARAFRAZ M M, ARYA H, SAEEDI M, et al. Flow boiling heat transfer to MgO-therminol 66 heat transfer fluid: Experimental assessment and correlation development[J]. Applied Thermal Engineering, 2018, 138: 552-562.

[13]刘宁. 液冷系统中流体流动及换热特性的研究[D]. 南京: 南京理工大学, 2012.

[14]陈坤. 车用锂离子电池模组液冷散热优化研究[D]. 长春: 吉林大学, 2020.

[15]唐帅. 基于三维气流场电动汽车直流充电桩散热系统仿真与分析[D]. 沈阳: 沈阳工业大学, 2018: 9-45.

[16]侯春光, 徐玉婷. 基于正交试验法的功率模块优化对直流充电桩散热影响研究[J]. 电器与能效管理技术, 2019(8): 32-37.

[17]王燕令, 赵地. 弓形流道快速充电模块液冷板流动散特性研究[J]. 低温与超导, 2020, 48(3): 59-69.