ISSN 1008-5548

CN 37-1316/TU

2022年28卷  第6期
<返回第6期

SiO2携载铕配合物粉体的制备与表征

Preparation and characterization of SiO2supported europium complex powder

王洪鹏, 刘安宁, 刘洪基, 王冬梅

(山东科技大学化学与生物工程学院, 山东青岛266000)


DOI:10.13732/j.issn.1008-5548.2022.06.007

收稿日期: 2022-04-27, 修回日期:2022-07-07,在线出版时间:2022-11-01。

基金项目:国家自然科学基金项目,编号:21971152。

第一作者简介:王洪鹏(1998—),男,硕士研究生,研究方向为稀土配合物与无机材料复合的合成与应用。E-mail: 11470414422@qq.com。

通信作者简介:王冬梅(1966—),女,教授,博士,硕士生导师,研究方向为稀土配合物的复合与应用。E-mail: skdwdm@163.com。


摘要:选用铕离子作为中心离子,α-噻吩甲酰三氟丙酮(TTA)作为第一配体,邻菲罗啉(phen)作为第二配体,二氧化硅(SiO2)作为携载体,利用化学沉淀法合成二元配合物Eu(TTA)3·H2O和三元配合物Eu(TTA)3·phen,利用Stober方法合成2种SiO2携载的复合物;采用傅里叶变换红外光谱仪、紫外吸收光谱仪、荧光分光光度计、热重分析仪、扫描电子显微镜对2种铕配合物及相应的SiO2复合物的结构、形貌、荧光性质进行表征分析;通过配合物与复合物的对比,研究SiO2携载对于配合物荧光性能与热稳定性的影响。结果表明:稀土配合物携载SiO2后其荧光强度提升到接近2倍,三元配合物的荧光强度优于二元配合物的;SiO2携载后的复合物热稳定性得以提升。

关键词:铕;稀土配合物;二氧化硅携载

Abstract:Europium ion was selected as the central ion, α-thenoyltrifluoroacetone(TTA) as the first ligand, phenanthroline(phen) as the second ligand and silica(SiO2) as the carrier, the binary complexes Eu(TTA)3·H2O and ternary complexes Eu(TTA)3·phen were synthesized by chemical precipitation method. Two SiO2 supported composites were synthesized by Stober method. The structure, morphology and fluorescence properties of two Eu complexes and corresponding SiO2 complexes were characterized and analyzed by Fourier transform infrared spectrometer, ultraviolet absorption spectrometer, fluorospectrophotometer, thermal gravimetric analyzer and scanning electron microscope. The effects of SiO2 loading on the fluorescence properties and thermal stability of the complexes were studied by comparing with and without SiO2 loading. The results show that the fluorescence intensity of rare earth complexes carried on SiO2 increase to nearly 2 times, and ternary complexes are better than binary complexes and the thermal stability of SiO2 loaded composites is improved.

Keywords:europium; rare earth complex; silicon dioxide coating


参考文献(References):

[1]ZHANG Q, SHENG Y, ZHENG K, et al. Novel organic-inorganic amorphous photoactive hybrid films with rare earth (Eu3+, Tb3+) covalently embedded into silicon-oxygen network via sol-gel process[J]. Materials Research Bulletin, 2015, 70: 379-384.

[2]LAI J, WANG T, ZHANG H, et al. Modulating the photoluminescence of europium oxide nanoparticles by controlling thermal decomposition conditions[J]. Journal of Luminescence, 2019, 214: 116534.

[3]PANDEY S, SHARMA A K, GUO J-L, et al. Direct white light emission from ultrasmall europium nanocrystals[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(27): 9955-9961.

[4]LV Y, ZHANG J, WANG L, et al. Enhanced electroluminescence of Eu3+ by Tb3+ in complexes Tb1-xEux(TTA)3Dipy[J]. Journal of Luminescence, 2008, 128(1): 117-122.

[5]LUAN F, XIAO G, ZHANG Y, et al. Synthesis, fluorescence properties and F-detection performance of Eu(III) complexes based on the novel coumarin Schiff base derivatives[J]. Journal of Molecular Liquids, 2020, 320: 114439.

[6]SHAKIROVA J R, SHEVCHENKO N N, BAIGILDIN V A, et al. Eu-based phosphorescence lifetime polymer nanothermometer: a nanoemulsion polymerization approach to eliminate quenching of eu emission in aqueous Media[J]. ACS Applied Polymer Materials, 2019, 2(2): 537-547.

[7]KAVITHA A, EASWARAMOORTHY D, THANGEESWARI T, et al. Synthesis and characterization of tritendate Schiff base rare earth nano metal complexes[J]. Materials Today: Proceedings, 2020, 34(2): 453-459.

[8]KHAN L U, BRITO H F, HOLSA J, et al. Red-green emitting and superparamagnetic nanomarkers containing Fe3O4 functionalized with calixarene and rare earth complexes[J]. Inorg Chem, 2014, 53(24): 12902-12910.

[9]FANG F, ZHAO D, ZHANG Y, et al. Europium-doped nanoparticles for cellular luminescence lifetime imaging via multiple manipulations of aggregation state[J]. ACS Applied Bio-Materials, 2020, 3(8): 5103-5110.

[10]WANG D, YU Y, AI X, et al. Polylactide/poly(butylene adipate-co-terephthalate)/rare earth complexes as biodegradable light conversion agricultural films[J]. Polymers for Advanced Technologies, 2019, 30(1): 203-211.

[11]LEVCHENKO V. Luminescence of europium complex enhanced by surface plasmons of gold nanoparticles for possible application in luminescent solar concentrators[J]. Journal of Luminescence, 2018, 193: 5-9.

[12]CHEN Z, LIU G, ZHANG X, et al. Synthesis of multifunctional rare-earth fluoride/Ag nanowire nanocomposite for efficient therapy of cancer[J]. Materials Science and Engineering:C, 2019, 104: 109940.

[13]MUTTI A M G, SANTOS J A O, CAVALCANTE D G S M, et al. Decorated silica particles with terbium complexes as luminescent biomarker for cell imaging[J]. Optical Materials, 2019, 90: 57-63.

[14]PENG D, WU X, LIU X, et al. Color-tunable binuclear (Eu, Tb) nanocomposite powder for the enhanced development of latent fingerprints based on electrostatic interactions[J]. ACS Appl Mater Interfaces, 2018, 10(38): 32859-32866.

[15]CIRCU M, RADU T, PORAV A S, et al. Surface functionalization of Fe3O4@SiO2 core-shell nanoparticles with vinylimidazole-rare earth complexes: synthesis, physico-chemical properties and protein interaction effects[J]. Applied Surface Science, 2018, 453: 457-463.

[16]DIVYA V, BIJU S, VARMA R L, et al. Highly efficient visible light sensitized red emission from europium tris[1-(4-biphenoyl)-3-(2-fluoroyl)propanedione](1, 10-phenanthroline) complex grafted on silica nanoparticles[J]. Journal of Materials Chemistry, 2010, 20(25): 5220.

[17]刘思倩, 李亚玲, 罗洪添,等. SiO2@Gd2O3∶Eu3+纳米核壳颗粒的制备及其荧光特性研究[J]. 广西物理, 2020, 41(增刊1/2): 44-48.

[18]徐容, 张丹丹, 袁高林, 等. 聚电解质包覆的铕配合物@SiO2荧光纳米粒的合成与性质[J]. 发光学报, 2011, 32(5): 476-481.

[19]骆华锋. 二氧化硅包覆磁性纳米粒子的制备与表征[J]. 青岛科技大学学报(自然科学版), 2012, 33(3): 225-228.

[20]QU Y R, LIN X M, WANG A L, et al. Study on silicon oxide coated on silver nanocrystal to enhance fluorescence intensity of rare earth complexes[J]. Journal of Luminescence, 2014, 154: 402-409.

[21]WANG Y, HUANG L, TANG J, et al. Melt spinning fibers of Isotactic polypropylene doped with long-lifetime luminescent inorganic-organic SiO2-Eu3+ hybrid nanoparticles[J]. Materials Letters, 2017, 204: 31-34.

[22]SAKKA S. Sol-gel technology as reflected in journal of sol-gel science and technology[J]. Journal of Sol-Gel Science and Technology, 2003, 26(1): 29-33.

[23]TU W, CAI W, JIANG Y, et al. Facile synthesis of novel rare-earth elements-modified SiO2 films for effective Cr(VI) removal from electroplating effluent[J]. Journal of Chemical & Engineering Data, 2019, 64(6): 2677-2685.

[24]CIRIMINNA R, PAGLIARO M. Open challenges in sol-gel science and technology[J]. Journal of Sol-Gel Science and Technology, 2022, 101(1): 29-36.