ISSN 1008-5548

CN 37-1316/TU

2022年28卷  第6期
<返回第6期

基于CFD-DEM耦合的导向钻头井底岩屑运移特性分析

CFD-DEM coupling-based analysis of rock chip transport characteristics at bottom of rotary-guided drill bit

胡金帅, 张光伟, 陈 雨, 李俊岭, 闫丰平

(西安石油大学机械工程院, 陕西西安710065)


DOI:10.13732/j.issn.1008-5548.2022.06.005

收稿日期: 2022-04-09, 修回日期:2022-05-10,在线出版时间:2022-11-01。

基金项目:国家自然科学基金项目,编号:51174164;陕西省自然科学基金项目,编号:2018JM5015。

第一作者简介:胡金帅(1996—),男,硕士研究生,研究方向为旋转导向钻井工具及井下岩屑运移。E-mail: 1014030562@qq.com。

通信作者简介:张光伟(1961—),男,教授,硕士,硕士生导师,研究方向为井下旋转导向钻井工具。E-mail: zhangguangwei@163.com。

文章编号:1008-5548(2022)06-0037-12


摘要:为了探究旋转导向钻具在导向钻进过程中井底岩屑运移规律,采用计算流体动力学和离散单元法耦合算法(CFD-DEM)建立描述井底钻井液与岩屑颗粒复杂两相流动的模型,运用有限元软件与离散元软件分析旋转导向钻具井底岩屑颗粒的运动学特性;探讨旋转导向钻头偏置角度、钻井液流速、钻头转速、岩屑颗粒粒径对井底岩屑颗粒运移特性的影响规律。结果表明:提高转速与钻井液流速,岩屑颗粒的运移速度随之增大,对于井底岩屑颗粒的运移起到正反馈的作用,可提高井底清洁度;岩屑颗粒粒径的增大会减小岩屑颗粒的运移速度,当岩屑颗粒的直径大于3 mm时,岩屑运移速度减小更加明显;旋转导向钻具钻头偏置会导致井底空间结构的变化,岩屑颗粒动能和钻井液水力能量也会削弱,最终会加剧钻头磨损,产生泥包等。

关键词:计算流体动力学;离散单元;耦合算法;井底流场;旋转导向钻具;岩屑运移

Abstract:In order to investigate the kinematic characteristics of the rock chip particles in the bottom of the well during the guided drilling process of rotary-guided drilling tools, a complex two-phase flow model describing the drilling fluid and rock chip particles in the bottom of the well was developed by using a coupled algorithm of computational fluid dynamics and discrete element method, and the kinematic characteristics of rock chip particles in the bottom of the well of rotary-guided drilling tools were analyzed by using software of FLUENT and EDEM. The effects of offset angle of rotary-guided drill bit, drilling fluid flow rate, drill bit speed and particle size on the kinematic characteristics of rock chip particles in the wellbore were investigated. The results show that increasing the rotational speed and drilling fluid flow rate increase the transport speed of rock chip particles, which has a positive feedback effect on the transport of rock chip particles and improve the cleanliness of the well bottom. Increasing the particle size of rock chip particles reduces the transport speed of rock chip particles, and when the diameter of rock chip particles is larger than 3 mm, the reduction of rock chip transport speed is more obvious.The offset of the drill bit of the rotary-guided drilling tool causes the change of the spatial structure of the well bottom and the change of rock chip particles. The change of spatial structure, the collision between rock chip particles lead to kinetic energy loss, and the hydraulic energy is also weakened by the change of spatial structure, which makes the rock chip particle transportation efficiency decrease, and eventually will aggravate the bit wear and produce the mud packing.

Keywords:computational fluid dynamics; discrete element method; coupling algorithm; bottom hole flow field; rotary-guided drilling tool; cutting particles


参考文献(References):

[1]姜伟, 蒋世全, 付鑫生, 等. 旋转导向钻井技术应用研究及其进展[J]. 天然气工业, 2013, 33(4): 75-79.

[2]王志亮, 赵莹, 丛成, 等. 基于CFD-DEM的新型铝合金钻杆携岩仿真分析[J]. 机床与液压, 2021, 49(20): 130-136.

[3]邵兵, 闫怡飞, 毕朝峰, 等. 基于CFD-DEM耦合模型的大粒径非常规岩屑颗粒运移规律研究[J]. 科学技术与工程, 2017, 17(27): 190-195.

[4]罗金武, 况雨春, 张锐, 等. 基于CFD-DEM耦合的水平井PDC钻头水力结构研究[J]. 工程设计学报, 2020, 27(5): 636-644.

[5]豆旭谦, 王力. 煤矿井下硬岩定向钻进技术装备与应用[J]. 煤矿安全, 2021, 52(11): 117-122.

[6]杜鹏, 张汶定. 自进式直旋混合射流钻头结构优化与钻孔能力分析[J/OL]. 煤田地质与勘探: 1-10[2022-04-10]. http://kns.cnki.net/kcms/detail/61.1155.P.20220316.0823.004.html.

[7]马腾飞, 周宇, 李志勇, 等. 新型低伤害高性能微泡沫钻井液性能评价与现场应用[J]. 油田化学, 2021, 38(4): 571-579.

[8]李劲, 边晨阳, 刘忠, 等. 基于DPM模型的旋切式PDC钻头流场特性研究[J]. 石油机械, 2021, 49(9): 24-32.

[9]闫炎, 管志川, 阎卫军, 等. 基于DPM模型的双级PDC钻头流场特性研究[J]. 石油机械, 2019, 47(9): 1-9.

[10]张杰, 李荣鑫, 李鑫, 等. 泡沫钻水平井岩屑颗粒的运移规律研究[J]. 钻采工艺, 2022, 45(1): 53-58.

[11]ZHANG F F, MISKA S, YU M J, et al. A unified transient solid-liquid two-phase flow model for cuttings transport-modelling part[J]. Journal of Petroleum Science and Engineering, 2018, 166: 146-156.

[12]SUN B J, XIANG H F, LI H, et al. Modeling of the critical deposition velocity of cuttings in an inclined-slimhole annulus[J]. SPE Journal, 2017, 22(4): 1213-1224.

[13]陈修平, 邹德永. PDC钻头泥页岩地层钻进泥包机理及对策研究进展[J]. 天然气工业, 2014, 34(2): 87-91.

[14]刘国强, 屈圣力, 李照. 煤层气水平井防砂泵井液携煤粉流动特性分析[J]. 特种油气藏, 2019, 26(4): 165-169.

[15]王胤, 艾军, 杨庆. 考虑粒间滚动阻力的CFD-DEM流-固耦合数值模拟方法[J]. 岩土力学, 2017, 38(6): 1771-1780.

[16]AKHSHIK S, BEHZAD M, RAJABI M. CFD-DEM simulation of the hole cleaning process in a deviated well drilling: the effects of particle shape[J]. Particuology, 2016, 25(2): 72-82.

[17]赵健, 徐依吉, 孙宝京, 等. 粒子射流喷射钻塞流场特性及参数优化[J]. 中国石油大学学报(自然科学版), 2020, 44(6): 63-72.

[18]陈绪跃, 曹通, 高德利, 等. 射流磨钻头流场特性及其外排屑槽影响的数值模拟[J]. 石油钻采工艺, 2020, 42(2): 162-166.