ISSN 1008-5548

CN 37-1316/TU

2022年28卷  第6期
<返回第6期

热解Cu-BTC衍生制备Ag@CuO复合材料

Preparation of Ag@CuO composites by pyrolytically derivatization of Cu-BTC

鲍 斌, 顾傲天, 陈九玉, 杨 毅

(南京理工大学环境与生物工程学院, 江苏南京210094)


DOI:10.13732/j.issn.1008-5548.2022.06.003

收稿日期: 2022-04-17, 修回日期:2022-07-18,在线出版时间:2022-11-01。

基金项目:国家自然科学基金项目,编号:11805101、 51908240;江苏省自然科学基金项目,编号:BK20181064。

第一作者简介:鲍斌(1997—),男,硕士研究生,研究方向为环境功能材料。E-mail: 3258409433@qq.com。


摘要:为了改变铜基金属有机骨架Cu-BTC的功能活性,提高吸附碘离子的能力,对其进行可控热解,制备出具有合适孔道和疏水性能的MOF衍生材料Cu-Cu2O,随后浸渍负载纳米Ag,并进一步热解,制备Ag@CuO复合材料,同时进行吸附实验。结果表明:在温度为343℃的氮气条件下,热解Cu-BTC制备的Cu-Cu2O衍生材料,最大吸附量为95.8 mg/g;在引入纳米Ag后,质量分数为10%的Ag@CuO复合材料最大吸附量达到205.0 mg/g; Cu-Cu2O在120 min时接近于吸附平衡,Ag@CuO在15 min能达到平衡吸附量的50%,在90 min时接近于吸附平衡。通过可控热处理和引入纳米Ag,在Ag、Cu双活性位点和碘离子作用下,Ag@CuO复合材料对碘离子的去除速率增加25.0%,去除效率提高114.0%。

关键词:金属有机骨架;Ag改性;吸附效率;吸附速率

Abstract:In order to change the functional activity of Cu-based metal-organic framework Cu-BTC and improve its ability to adsorb iodide ions, controllable pyrolysis was carried out to prepare MOF-derived materials with suitable pore channels and hydrophobic properties, which were impregnated and loaded with nano-Ag before pyrolysising, then the Ag@CuO composites were prepared and adsorption isotherm experiments were performed simultaneously. The results show that the maximum adsorption capacity of Cu-Cu2O derived materials prepared by pyrolysis of Cu-BTC is 95.8 mg/g under nitrogen at 343 ℃. After the introduction of nano-Ag, Ag@CuO with a mass fraction of 10% has good adsorption effect, and the maximum adsorption capacity of the composite reaches 205.0 mg/g. Cu-Cu2O is close to the adsorption equilibrium at 120 min, and Ag@CuO can reach 50% of the equilibrium adsorption capacity at 15 min and is close to the adsorption equilibrium at 90 min. Through controllable heat treatment and introduction of nano-Ag, under the action of Ag and Cu dual active sites with iodide ions, Ag@CuO can increase the removal rate of iodide ions by 25% and the removal efficiency by 114.0%.

Keywords:metal-organic framework; Ag modification; adsorption efficiency; adsorption rate


参考文献(References):

[1]SARA S, ROY S, PANDIYATHURAY M, et al. Adsorption of iodine species ( I-3, I-, IO-3at the nuclear paint monolayer-water interface and its relevance to a nuclear accident scenario[J]. The Journal of Physical Chemistry A, 2020, 124: 6726-6734.

[2]DURMAZ F, ANDIRICI Y. Ultrafiltration membrane separation technique for drinking water[J]. Emerging Materials Research, 2020, 9(3): 1028-1030.

[3]WAQAS S, BILAD M R, MAN Z B, et al. An integrated rotating biological contactor and membrane separation process for domestic wastewater treatment[J]. Alexandria Engineering Journal, 2020, 59(6): 4257-4265.

[4]DAUD N M, ABDULLAH S, HASAN H A, et al. Integrated physical-biological treatment system for batik industry wastewater: a review on process selection[J]. Science of the Total Environment, 2022, 819: 152931.

[5]SHI L, DUAN B, ZHU Z, et al. Preparing copper catalyst by ultrasound-assisted chemical precipitation method[J]. Ultrasonics Sonochemistry, 2020, 64: 105013.

[6]RAHIMI H, GHAFELEBASH A, SHAMS K, et al. Monoethylene glycol reclamation based on chemical precipitation process[J]. Journal of Natural Gas Science and Engineering, 2021, 92(13): 103992.

[7]CHUI S Y, LO M F, CHARMANT J, et al. A chemically functionalizable nanoporous material[Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283(5405): 1148-1150.

[8]张爽, 丁欣欣, 闫良国. 改性水滑石类材料的制备及其吸附性能研究进展[J]. 中国粉体技术, 2021, 27(1): 1-10.

[9]吴帅, 侯太磊, 闫良国. 膨润土和磁性膨润土微球的制备及其对水中碱性染料的吸附性能[J]. 中国粉体技术, 2020, 26(3): 7-14.

[10]WEI S, GAO L, XU S, et al. A novel route with a Cu(II)-MOF-derived structure to synthesize Cu/Cu2O NPs@graphene: the electron transfer leads to the synergistic effect of the Cu(0)-Cu(I) phase for an effective catalysis of the Sonogashira cross-coupling reactions[J]. Dalton Transactions, 2018, 47: 5538-5541.

[11]ZHANG T, YUE X, GAO L, et al. Hierarchically porous bismuth oxide/layered double hydroxide composites: preparation, characterization and iodine adsorption[J]. Journal of Cleaner Production, 2017, 144(15): 220-227.

[12]LIU S, WANG N, ZHANG Y, et al. Efficient removal of radioactive iodide ions from water by three-dimensional Ag2O-Ag/TiO2 composites under visible light irradiation[J]. Journal of Hazardous Materials, 2015, 284: 171-181.

[13]KRUMHANSL J L, NENOFF T M. Hydrotalcite-like layered bismuth-iodine-oxides as waste forms[J]. Applied Geochemistry, 2011, 26(1): 57-64.

[14]ZHANG X, GU P, LI X, et al. Efficient adsorption of radioactive iodide ion from simulated wastewater by nano Cu2O/Cu modified activated carbon[J]. Chemical Engineering Journal, 2017, 322: 129-139.

[15]CHEN J Y, GAO Q H, ZHANG X M, et al. Nanometer mixed-valence silver oxide enhancing adsorption of ZIF-8 for removal of iodide in solution[J]. Science of the Total Environment, 2018, 646: 634-644.

[16]赵瑨云, 胡家朋, 林皓,等. Ag+改性羟基磷灰石制备及其除氟抑菌特性研究[J]. 硅酸盐通报, 2020, 12: 3977-3984.

[17]ZHANG S Y, LIU H, SUN C C, et al. CuO/Cu2O porous composites: shape and composition controllable fabrication inherited from metal organic frameworks and further application in CO oxidation[J]. Journal of Materials Chemistry A, 2015, 3(10): 5294-5298.

[18]YAN S, PAN Y M, WANG L, et al. Effects of calcination temperature on the microstructure and adsorption properties of attapulgite microspheres[C]. Materials Science Forum, 2018, 913: 907-916.

[19]SUN Q, HU X, ZHENG S, et al. Influence of calcination temperature on the structural, adsorption and photocatalytic properties of TiO2 nanoparticles supported on natural zeolite[J]. Powder Technology, 2015, 274: 88-97.

[20]MAO P, LIU Y, JIAO Y, et al. Enhanced uptake of iodide on Ag@Cu2O nanoparticle[J]. Chemosphere, 2016, 164: 396-403.

[21]MAO P, LIU Y, LIU X D, et al. Bimetallic AgCu/Cu2O hybrid for the synergetic adsorption of iodide from solution[J]. Chemosphere, 2017, 180: 317-325.