王 霖, 王凤鸣, 刘站忠, 张楚华, 李国君
(西安交通大学热流科学与工程教育部重点实验室, 陕西西安710049)
DOI:10.13732/j.issn.1008-5548.2022.06.002
收稿日期: 2022-04-17, 修回日期:2022-05-21,在线出版时间:2022-11-01。
基金项目:国家重点研发计划资助项目,编号:2016YFB0200900。
第一作者简介:王霖(1998—),男(满族),硕士研究生,研究方向为叶轮机械三维设计。E-mail: 3120303175@xjtu.edu.cn。
通信作者简介:李国君(1964—),男,教授,博士,博士生导师,研究方向为流体力学。E-mail: liguojun@xjtu.edu.cn。
摘要:采用计算流体动力学(CFD)方法对涡轮式砂磨机进行单相流场数值模拟,改进其涡轮结构,分析涡轮改进前、后以及不同涡轮转速对砂磨机内部流场和研磨特性带来的影响。结果表明:改进后的涡轮可以使砂磨机内部流体拥有更大的流速,提升研磨介质中颗粒间的碰撞频率与能量,并且增大流体近壁侧的速度梯度,整体研磨强度与最大研磨强度都有所提升;在一定范围内提升涡轮转速,砂磨机内流场特征并不会改变,其研磨强度的提升同涡轮转速呈正相关。
关键词:涡轮式磨砂机;研磨特性;数值模拟;计算流体动力学
Abstract:Computational fluid dynamics(CFD) method was used to carry out numerical simulation of single-phase flow field and improve the turbine structure. The effects of turbine structure and turbine speed on the flow field and grinding characteristics of sand mill were analyzed. The results show that the improved turbine can make the fluid inside the grinding machine have a higher flow rate, improve the collision frequency and energy between particles in the grinding medium, increase the velocity gradient near the wall of the fluid, and improve the overall and maximum grinding intensity. When the turbine speed increases within a certain range, the flow field characteristics in the increasing will not change, and the increasing of grinding intensity is positively correlated with the turbine speed.
Keywords:turbine sand mill; grinding characteristics; numerical simulation; computational fluid dynamics
参考文献(References):
[1]朱常龙, 任常兴, 许永胜. 超音速气流粉碎机生产超细粉体的安全问题探讨[J]. 安全与环境工程, 2003(3): 88-91.
[2]黄业豪, 李茂林, 姜兴科. 卧式搅拌磨机能量利用率的研究[J]. 中国粉体技术, 2016, 22(1): 44-47.
[3]姚征, 陈康民. CFD通用软件综述[J]. 上海理工大学学报, 2002, 24(2): 137-144.
[4]CHEN Y S, SHAN X W, CHEN H D. New direction of computational fluid dynamics and its applications in industry[J]. 中国科学E辑: 英文版, 2007, 50(5): 521-533.
[5]徐传福, 车永刚, 李大力, 等. 天河超级计算机上超大规模高精度计算流体力学并行计算研究进展[J]. 计算机工程与科学, 2020, 42(10): 1815-1826.
[6]曾桂忠, 段希祥. 立式球磨机在铝土矿选择性磨矿的试验研究[J]. 矿山机械, 2009, 37(17): 58-60.
[7]陈璟, 谢帮灵, 吴国勇, 等. 应用CFD技术改进研磨机结构[J]. 中国胶粘剂, 2017, 26(2): 29-34.
[8]张国旺. 超细搅拌磨机的流场模拟和应用研究[D]. 长沙: 中南大学, 2005.
[9]张国旺, 黄圣生. 超细搅拌磨机的流场模拟和应用[J]. 矿山机械, 2008, 36(21): 78-83.
[10]龚曙光, 刘剑, 谢桂兰, 等. 卧式超细搅拌磨机分散盘的结构改进及试验研究[J]. 矿山机械, 2017, 45(12): 36-42.
[11]赵艳平. 超细卧式搅拌磨的流场模拟及其粉碎机理研究[D]. 昆明: 昆明理工大学, 2009.
[12]FUKUI S, TSUNAZAWA Y, HISATOMI S, et al. Effect of agitator shaft direction on grinding performance in media stirred mill: investigation using DEM simulation[J]. Materials Transactions, 2018, 59(3): 488.
[13]ZHENG M, WU F, HUANG W, et al. Multiphysics design and analysis of an impeller-type superfine grinding turbulence mill driven by a high-speed permanent magnet machine[J]. Journal of Mechanical Science and Technology, 2021, 35(12): 5611-5620.
[14]KWADE A. Wet comminution in stirred media mills: research and its practical application[J]. Powder Technology, 1999, 105(1): 14-20.
[15]GRAEME L. CFD modelling of a stirred bead mill for fine grinding[C]//CSIOR Minerals. Proceedings of the Second International Conference on CFD in the Minerals and Process Industries: 1999. Melbourne: CSIOR, 1999: 449-454.
[16]STEHR N, SCHWEDES J. Investigation of the grinding behavior of a stirred ball mill[J]. German Chemical Engineering, 1983, 6(6): 337-343.