崔砚伟, 郭 琳, 夏雨灿, 杨树华, 曹丙强
(济南大学 材料科学与工程学院, 山东 济南 250022)
DOI:10.13732/j.issn.1008-5548.2023.01.015
收稿日期: 2022-10-31,修回日期:2022-11-20,在线出版时间:2022-12-02 17:51。
基金项目:国家自然科学基金项目,编号:51702123;山东省自然科学基金项目,编号:ZR2022ME181。
第一作者简介:崔砚伟(1997—),男,硕士研究生,研究方向为新能源材料与器件。E-mail: CYW15621696948@163.com。
通信作者简介:杨树华(1986—),男,副教授,博士,硕士生导师,研究方向为新能源材料与器件。E-mail: yangshuhua78@163.com。
摘要:采用静电纺丝技术制备ZIF-8-PAN复合纳米纤维,经预氧化和高温碳化制得ZIF-8-PAN衍生多孔碳纳米纤维(ZIF-8-PANC);利用扫描电镜、比表面及孔径分析技术对ZIF-8-PANC的形貌和微结构进行表征,测试作为锌离子混合电容器(ZHS)电极材料的电化学性能。结果表明:ZIF-8-PANC结合碳纳米纤维的高导电性和ZIF-8衍生碳的丰富多孔结构,不仅导电性能良好,同时增大比表面积,得到分级多孔结构,ZIF-8-PANC可有效实现电子、离子的快速传输和锌离子的高容量储存;当电流密度为0.5 A·g-1时,ZIF-8-PANC电极的比容量达到240 mAh·g-1,循环稳定性优异。
关键词:静电纺丝技术;沸石咪唑酯骨架结构;多孔碳纳米纤维;锌离子混合电容器
Abstract:ZIF-8-PAN composite nanofibers were prepared by electrospinning, and then ZIF-8-PAN derived porous carbon nanofibers(ZIF-8-PANC) were prepared by pre-oxidation and high-temperature carbonization. The morphology and microstructure were characterized by scanning electron microscopy and the specific surface area, pore size distribution analysis, and their electrochemical properties for zinc ion hybrid supercapacitor(ZHS) were tested. The results show that ZIF-8-PANC combines the high conductivity of carbon nanofibers and the rich porous structure of ZIF-8 derived carbon, which not only provides good conductivity, but also realizes high specific surface area and hierarchical porous structure. Therefore, ZIF-8-PANC can effectively realize the rapid transfer of electrons, ions and the high-capacity storage of zinc ions. When the current density is 0.5 A·g-1, the specific capacity of the ZIF-8-PANC electrode reaches 240 mAh·g-1 and exhibits excellent cycle stability.
Keywords:electrospinning technology; framework structure of zeolite imidazole esters; porous carbon nanofiber; zinc ion hybrid supercapacitor
参考文献(References):
[1]AI J G, YANG S H, SUN Y N, et al. Corncob cellulose-derived hierarchical porous carbon for high performance supercapacitors[J]. Journal of Power Sources,2021, 484: 229221.
[2]WANG Z W, JIN B J, PENG J, et al. Engineered polymeric carbon nitride additive for energy storage materials: a review[J]. Advanced Functional Materials, 2021, 31 (43): 2102300.
[3]张思佳, 范宪楷, 陈晗, 等. 五氧化二铌/碳纳米管水系锌离子混合电容器负极材料的制备及其电化学性能[J]. 化学试剂, 2021, 43(9): 1180-1187.
[4]OWUSU K A, QU L B, LI J T. et al. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors[J]. Nature Communications, 2017, 8(1): 1-11.
[5]ZHAO Z H, HAO S M, HAO P, et al. Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode[J]. Journal of Materials Chemistry A, 2015, 3(29): 15049-15056.
[6]HAN L, HUANG H L, FU X B, et al. A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor[J]. Chemical Engineering Journal, 2020, 392: 123733.
[7]CHAO D L, ZHU C R, XIA X H, et al. Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries[J]. Nano Letters,2015, 15(1): 565-573.
[8]YANG Y, CHEN D L, WANG H Y, et al. Two-step nitrogen and sulfur doping in porous carbon dodecahedra for Zn-ion hybrid supercapacitors with long term stability[J]. Chemical Engineering Journal, 2022, 431: 133250.
[9]RAMAVATH J N, RAJA M. BALAKUMAR K, et al. An energy and power dense aqueous zinc-ion hybrid supercapacitor with low leakage current and long cycle life[J]. Journal of the Electrochemical Society, 2021, 168(1): 010538.
[10]YU J, WANG L J, PENG J X, et al. O-doped porous carbon derived from biomass waste for high-performance zinc-ion hybrid supercapacitors[J]. Ionics, 2021, 27(10): 4495-4505.
[11]ZHANG X P, ZHANG Y H, ZHANG H F, et al. Zinc-ion hybrid capacitor with high energy density constructed by bamboo shavings derived spongy-like porous carbon[J]. Chemistry Select, 2021, 6(27): 6937-6943.
[12]TIAN Y, AMAL R, WANG D W. An aqueous metal-ion capacitor with oxidized carbon nanotubes and metallic zinc electrodes[J]. Frontiers in Energy Research, 2016, 4: 34.
[13]WANG H, WANG M, TANG Y B. A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications[J]. Energy Storage Materials, 2018, 13: 1-7.
[14]LI W, ZHANG F, DOU Y Q, et al. A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes[J]. Advanced Energy Materials, 2011, 1(3): 382-386.
[15]PAUL A, BANGA I K, MUTHUKUMAR S, et al. Engineering the ZIF-8 pore for electrochemical sensor applications: a mini review[J]. ACS Omega, 2022, 7(31): 26993-27003.