高晓红1,2, 王彦明2, 冯辉霞1
(1. 兰州理工大学 石油化工学院, 甘肃 兰州 730050;2.河北工程大学 材料科学与工程学院; 河北省改性塑料技术创新中心, 河北 邯郸 056038)
DOI:10.13732/j.issn.1008-5548.2023.01.013
收稿日期: 2022-07-14,修回日期:2022-11-17,在线出版时间:2022-12-06 08:55。
基金项目:国家自然科学基金项目, 编号: 51805140; 河北省自然科学基金项目, 编号: E2018402121;中央引导地方科技发展资金项目,编号:206Z1201G,216Z1202G。
第一作者简介:高晓红(1986—),女,博士研究生,研究方向为纳米材料的制备及在润滑领域的应用。E-mail: gaoxiaohong2008@126.com。
通信作者简介:冯辉霞(1966—),女,教授,博士,博士生导师,研究方向为纳米材料的制备及应用。E-mail: fenghx@163.com。
摘要:综述以六方氮化硼(hexagonal boron nitride, h-BN)粉体为原料制备氮化硼纳米片(boron nitride nanosheet, BNNS)的方法,归纳原料粒径、溶剂、超声波功率、磨球用量、助剂及预处理工艺等因素对BNNS制备的影响机理;概述h-BN和BNNS表面修改性的途径和方法,总结共价改性法和非共价改性法的机理和优缺点。同时提出:与化学剥离法、液相剥离法、机械剥离法和超临界剥离法相比,由于h-BN层间的π-π共轭和lip-lip作用,介质增强液相剥离法更加简便、高效,适合工业化批量生产,但是需选择恰当的剥离助剂并进一步揭示剥离过程的机理;由于h-BN结构中B、 N原子的化学惰性和局部共轭作用,纯h-BN和BNNS很难被基于化学反应的共价改性法进行直接修饰;h-BN及BNNS的非共价改性法操作简便,但以物理作用为基础的非共价改性结合力较弱,容易在高温、强酸碱等苛刻条件下失效。
关键词:氮化硼纳米片;剥离法;表面改性
Abstract:The methods of producing boron nitride nanosheet(BNNS) by using hexagonal boron nitride(h-BN) powder as raw material were reviewed. The influence mechanism of raw material particle size, solvent, ultrasonic power, amount of grinding ball, additives and pretreatment technology on the preparation of BNNS was summarized.The surface modification methods of h-BN and BNNS were summarized, and the mechanism, advantages and disadvantages of covalent and non-covalent modification methods were summarized. Compared with chemical, liquid phase, mechanical and supercritical exfoliation methods, the medium-enhanced liquid phase exfoliation method is more simple, efficient and suitable for industrial batch production due to the π-π conjugation and lip-lip interaction between h-BN layers. However, it is necessary to select appropriate exfoliation additives and further reveal the mechanism of the exfoliation process. Due to the chemical inertia and local conjugation of B and N atoms in the h-BN structure, pure h-BN and BNNS are difficult to be directly modified by the covalent modification method based on chemical reactions. The non-covalent modification method of h-BN and BNNS is simple to operate, but the non-covalent modification method based on physical action has weak binding force and is easy to fail under harsh conditions such as high temperature and strong acid base.
Keywords:boron nitride nanosheets; exfoliation method; surface modification
参考文献(References):
[1]DU M, LI X L, WANG A Z, et al. One-step exfoliation and fluorination of boron nitride nanosheets and a study of their magnetic properties[J]. Angewandte Chemie International Edition, 2014, 126(14): 3719-3723.
[2]LI X L, HAO X P, ZHAO M W, et al. Exfoliation of hexagonal boron nitride by molten hydroxides[J]. Advanced Materials, 2013, 25(15): 2200-2204.
[3]田亮, 梁峰, 李俊怡, 等. 熔盐氮化法制备六方氮化硼纳米片[J]. 机械工程材料, 2018, 42(4): 44-47.
[4] ZENG Z Y, SUN T, ZHU J X, et al. An effective method for the fabrication of few-layer-thick inorganic nanosheets[J]. Angewandte Chemie International Edition, 2012, 51(36): 9052-9056.
[5]HAN W Q,WU L J,ZHU Y M, et al. Structure of chemically derived mono- and few-atomic-layer boron nitride sheets[J]. Applied Physics Letters, 2008, 93(22): 223103
[6]ZHI C Y, BANDO Y, TANG C C, et al. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties[J]. Advanced Materials, 2009, 21(28): 2889-2893.
[7]COLEMAN J N, LOTYA M, O’NEILL A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571.
[8]WANG Y, SHI Z X, YIN J. Boron nitride nanosheets large-scale exfoliation in methane sulfonic acid and their composites with polybenzimidazole[J]. Journal of Materials Chemistry, 2011, 21(30): 11371-11377.
[9]BHIMANAPATI G R, KOZUCH D, ROBINSON J A. Large-scale synthesis and functionalization of hexagonal boron nitride nanosheets[J]. Nanoscale, 2014, 6(20): 11671-11675.
[10]MITTAL G, RHEE K Y, PARK S G. Processing and characterization of PMMA/PI composites reinforced with surface functionalized hexagonal boron nitride[J].Applied Surface Science, 2017, 415(1): 49-54.
[11]NIE X, LI G, JIANG Z, et al. Co-solvent exfoliation of hexagonal boron nitride: effect of raw bulk boron nitride size and co-solvent composition[J]. Nanomaterials, 2020, 10 (6) : 1035.
[12]GÜLER S H. The production of boron nitride nanosheets using liquid-phase exfoliation assisted by ball milling process[J]. Optoelectronics Advanced Materials, 2018, 12(11/12): 754-758.
[13]CHENG Z L, MA Z S, DING H L, et al. Environmentally friendly, scalable exfoliation for few-layered hexagonal boron nitride nanosheets (BNNSs) by multi-time thermal expansion based on released gases[J]. Journal of Materials Chemistry C, 2019, 7(46): 14701-14708.
[14]YUANG F, JIAO W C, YANG F, et al. Scalable exfoliation for large-size boron nitride nanosheets by low temperature thermal expansion-assisted ultrasonic exfoliation[J]. Journal of Materials Chemistry C, 2017, 5(25): 6359-6368.
[15]ANDRIANI Y, SONG J, LIM P C, et al. Green and efficient production of boron nitride nanosheets via oxygen doping-facilitated liquid exfoliation[J]. Ceramics International, 2019, 45(4): 4909-4917.
[16]DUONG N M H, GLUSHKOV E, CHERNEV A, et al. Facile production of hexagonal boron nitride nanoparticles by cryogenic exfoliation[J]. Nano Letters, 2019, 19(8): 5417-5422.
[17]WANG Y, LIU Y, ZHANG J F, et al. Cryo-mediated exfoliation and fracturing of layered materials into 2D quantum dots[J]. Science Advance, 2017, 3(12): e1701500.
[18]ACHARYA L, BABU P, BEHERA A, et al.Novel synthesis of boron nitride nanosheets from hexagonal boron nitride by modified aqueous phase bi-thermal exfoliation method[J]. Materials Today:Proceedings, 2021, 35(2): 239-242.
[19]CHAO Y H, LIU M, PANG J Y, et al. Gas-assisted exfoliation of boron nitride nanosheets enhancing adsorption performance[J].Ceramics International, 2019, 45(15): 18838-18843.
[20]SHANG J Q, XUE F, FAN C J, et al. Preparation of few layers hexagonal boron nitride nanosheets via high-pressure homogenization[J]. Materials Letters, 2016, 181:144-147.
[21]YE H J, LU T M, XU C F,et al. Liquid-phase exfoliation of hexagonal boron nitride into boron nitride nanosheets in common organic solvents with hyperbranched polyethylene as stabilizer[J]. Macromolecular Chemistry and Physics, 2018, 219(6): 1700482.
[22]NAIR M R, SURENDRAN S V, BINDHU B. Efficient mixed solvent strategy for boron nitride exfoliation[J]. AIP Conference Proceedings, 2019, 2100(1): 020010.
[23]ORTIZ D G, POCHAT-BOHATIER C, CAMBEDOUZOU J, et al. Exfoliation of hexagonal boron nitride (h-BN) in liquide phase by ion intercalation[J]. Nanomaterials,2018, 8(9):716.
[24]JIA W, TANG B B, WU P Y. Novel composite proton exchange membrane with connected long-range ionic nanochannels constructed via exfoliated nafion-boron nitride nanocomposite[J]. ACS Applied Materials and Interfaces, 2017, 9(17): 14791-14800.
[25]翟佳欣, 李国华, 甘思平, 等. CuCo/BNNSs纳米催化剂对固态储氢材料氨硼烷水解的催化性能[J]. 无机化学学报, 2020, 36(2): 241-252.
[26]LU H L, RONG M Z, ZHANG M Q. Large area few layers hexagonal boron nitride prepared by quadrupole field aided exfoliation[J]. Nanotechnology, 2018, 29(12): 12LT01.
[27]THANGASAMY P, SATHISH M. Supercritical fluid processing: a rapid, one-pot exfoliation process for the production of surfactant-free hexagonal boron nitride nanosheets[J]. Crystal Engineering Communication, 2015, 17(31): 5895-5899.
[28]NWANONENYI C C, PATEL A K, WANG P, et al. Supercritical fluid processing of boron nitride nanosheets for polymeric nanocomposites of superior thermal transport properties[J]. The Journal of Supercritical Fluids, 2021, 167: 105035.
[29]TIAN X J, LI Y, CHEN Z, et al. Shear-assisted production of few-layer boron nitride nanosheets by supercritical CO2 exfoliation and its use for thermally conductive epoxy composites[J]. Scientific Reports, 2017, 7(1): 11794.
[30]王腾飞, 孙长久, 孔德玉, 等. 超临界流体快速膨胀制备和分散氮化硼纳米片及其高分子复合材料的构建[J]. 青岛科技大学学报(自然科学版), 2019, 40(6): 65-70.
[31]DEEPIKA L, LI L H, GLUSHENKOV A M, et al. High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil[J]. Scientific Repors, 2014, 4(1): 7288.
[32]CHEN S H, XU R Z, LIU J M,et al.Simultaneous production and functionalization of boron nitride nanosheets by sugar-assisted mechanochemical exfoliation[J]. Advanced Materials, 2019, 31(10): 1804810.
[33]LEE D, LEE B, PARK K H, et al. Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling[J]. Nano Letters, 2015, 15(2): 1238-1244.
[34]CAO C C, XUE Y M, LIU Z Y, et al. Scalable exfoliation and gradable separation of boric-acid-functionalized boron nitride nanosheets[J]. 2D Materials, 2019, 6(3): 035014.
[35]JONI I M, BALGIS R, OGI T, et al. Surface functionalization for dispersing and stabilizing hexagonal boron nitride nanoparticle by bead milling[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 388(1): 49-58.
[36]YANG N, JI H F, JIANG X X, et al. Preparation of boron nitride nanoplatelets via amino acid assisted ball milling: towards thermal conductivity application[J]. Nanomaterials, 2020, 10(9): 1652.
[37]LEI W W, MOCHALIN V N, LIU D, et al. Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization[J]. Nature Communication, 2015, 6(12): 8849.
[38]WANG Z D, MEZIANI M J, PATEL A K, et al. Bonron nitride nanosheets from different preparations and correlations with their material properties[J]. Industrial and Engineering Chemistry Research, 2019, 58(40): 18644-18653.
[39]RAMASAMY M R, RAHAMAN A, KIM B K. Influence of oleylamine-functionalized boron nitride nanosheets on the crystalline phases, mechanical and piezoelectric properties of electrospun PVDF nanofibers[J].Composites Science and Technology, 2021, 203(3): 108570.
[40]ZHI Y C, BANDO C C, TANG S, et al. Characteristics of boron nitride nanotube-polyaniline composites[J]. Angewandte Chemie International Edition, 2015, 44(48): 7929-7932.
[41]HUANG K, LIANG L, CHAI S, et al. Aminopolymer functionalization of boron nitride nanosheets for highly efficient capture of carbon dioxide[J]. Journal of Materials Chemistry A, 2017, 5(31): 16241-16248.
[42]TANG Y L, XIAO C, DING J W, et al. Synergetic enhancement of thermal conductivity in the silica-coated boron nitride (SiO2@BN)/polymethyl methacrylate (PMMA) composites[J]. Colloid and Polymer Science, 2020, 298: 385-393.
[43]WAN P Y, ZHAO N, QI F G, et al. Synthesis of PDA-BN@f-Al2O3 hybrid for nanocomposite epoxy coating with superior corrosion protective properties[J]. Progress in Organic Coatings, 2020, 146: 105713.
[44]WANG J M, ZHANG L Z, WANG L F, et al. Two-dimensional boron nitride for electronics and energy applications[J]. Energy and Environmental Materials, 2022, 5(1): 10-44.
[45]YANG D, KONG X X, NI Y F, et al. Novel nitrile-butadiene rubber composites with enhanced thermal conductivity and high dielectric constant[J]. Composites: Part A: Applied Science and Manufacturing, 2019, 124: 105447-105455.
[46]XIAO H, ZHANG Z P, HUANG Z X, et al. Highly thermally conductive superior flexible and surface metallisable boron nitride paper fabricated by a facile and scalable approach[J]. Composites Communications, 2021, 23: 100584-100590.
[47]YANG D, WEI Q G, YU L Y, et al. Natural rubber composites with enhanced thermal conductivity fabricated via modification of boron nitride by covalent and non-covalent interactions[J]. Composites Science and Technology, 2021, 202: 108590-108596.
[48]YANG D, NI Y F, KONG X X, et al. Mussel-inspired modification of boron nitride for natural rubber composites with high thermal conductivity and low dielectric constant[J]. Composites Science and Technology, 2019, 177: 18-25.
[49]KIM Y J, KIM J H. Fabrication of Fe3O4 coated boron nitride nanoplatelets by liquid-phase exfoliation for thermally enhanced epoxy composites via magnetic alignment[J]. Composites Science and Technology, 2020, 188: 107961.
[50]LIU C L, TANG G B, SU F H, et al. Functionalised h-BN as an effective lubricant additive in PAO oil for MoN coating sliding against Si3N4 ball[J]. Lubrication Science, 2021, 33(2): 33-42.
[51]GAO X H, WANG Y Z, LI P, et al. Effect of copper oxide@boron nitride nanosheet hybridnanocomposite on tribological properties of paraff in liquid[J]. SN Applied Science, 2022, 4: 212.
[52]WU L F, YANG M M, YUAN Y Y et al. Facile synthesis of CuO/g-C3N4 hybrids for enhancing the wear resistance of polyimide composite[J]. European Polymer Journal, 2019, 116:463-470.
[53]JIANG F, CUI X L, SONG N, et al. Synergistic effect of functionalized graphene/boron nitride on the thermal conductivity of polystyrene composites[J]. Composites Communications, 2020, 20: 100350.
[54]ESMAEILI S, SAMADIZADEH M, KHALEGHIAN M. Evaluating role of the x-π (x=π and/or CH) stacking interactions in adsorption of the (4E, 4E)-4-(4-hydroxyphenyldiazenyl)-N-((furan-2-Yl)methylene)benzenamine antibacterial in armchair boron nitride nanotube[J]. Chemicke Zvesti, 2020, 74: 2991-3000.
[55]WU X J, AN W, ZENG X C. Chemical functionalization of boron-nitride nanotubes with NH3 and amino functional groups[J]. Journal of the American Chemical Society, 2006, 128(36): 12001-12006.
[56]DAI X J, CHEN Y, CHEN Z Q, et al. Controlled surface modification of boron nitride nanotubes[J]. Nanotechnology, 2011, 22(24): 245301-245308.
[57]REN Y Y, WU Y, XIAO B, et al. Heat transport and surface functionalization in nanocomposites of boron nitride nanotubes and polyethylene[J]. Physical Chemistry Chemical Physics, 2021, 23(15): 9604-9610.
[58]SAINSBURY T, SATTI A, MAY P, et al. Oxygen radical functionalization of boron nitride nanosheets[J]. Journal of the American Chemical Society, 2012, 134(45): 18758-18771.
[59]CHENG H, ZHAO K, GONG Y, et al. Covalent coupling regulated thermal conductivity of poly(vinyl alcohol)/boron nitride composite film based on silane molecular structure[J]. Composites: Part A: Applied Science and Manufacturing, 2020, 137: 106026.
[60]ROSELY C V S, JOSEPH A M, LEUTERITZ A, et al. Phytic acid modified boron nitride nanosheets as sustainable multifunctional nanofillers for enhanced properties of poly(L-lactide)[J]. ACS Sustainable Chemistry and Engineering, 2020, 8(4): 1868-1878.