ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第1期
<返回第1期

液相沉淀法制备氧化锌-壳聚糖复合材料及其抗菌性能

Preparation of zinc oxide-chitosan composite materials by liquid phase precipitation method and its antibacterial properties

秦广超1,张宁坤1,汪海晨1,乐 力2,李万园1,郑会会1

(1. 合肥学院 能源材料与化工学院,安徽 合肥 230601;2. 安徽江东科技粉业有限公司,安徽 宣城 242546)


DOI:10.13732/j.issn.1008-5548.2023.01.011

收稿日期: 2022-06-24,修回日期:2022-11-10,在线出版时间:2022-12-05 08:57。

基金项目:安徽省重点研发项目,编号:202104a05020029。

第一作者简介:秦广超(1971—),男,教授,硕士,硕士生导师,研究方向为材料制备与设计。E-mail: qgchao@163.com。


摘要:以硝酸锌(zinc nitrate, Zn(NO3)2)为锌源,以壳聚糖(chitosan, CS)为基底,以氢氧化钠(sodium hydroxide, NaOH)为沉淀剂,采用液相沉淀法制备氧化锌-壳聚糖(zinc oxide-chitosan, ZnO-CS)复合材料;借助扫描电镜、 X射线衍射分析、热重分析、 X射线光电子能谱、红外光谱和紫外吸收光谱等手段进行表征,考察ZnO-CS复合材料的形貌、结构组成以及ZnO在CS表面的吸附情况;将ZnO-CS悬浊液涂抹在新鲜熟白米上进行ZnO-CS复合材料的抗菌性能测试。结果表明:Zn2+-CS表面首先生长了一层棒状ZnO粒子膜;通过受热反应CS表面的氨基与Zn2+、 ZnO形成交联网络,使棒状ZnO进一步生长形成片状ZnO;CS表面的氨基所形成的交联网络吸附ZnO,得到ZnO-CS复合材料;在时间为6 d时,用ZnO-CS悬浊液处理后的新鲜熟白米没有生成菌落,在时间为12 d时菌落无明显扩散,表明ZnO-CS复合材料具有良好的抗菌作用。

关键词:氧化锌-壳聚糖复合材料;液相沉积法;抗菌性能

Abstract:Zinc oxide-chitosan(ZnO-CS) composite materials was synthesized by liquid phase precipitation method with zinc nitrate(Zn(NO3)2)as zinc source, CS as base and sodium hydroxide(NaOH) as stabilizer. X-ray photoelectron spectroscopy, infrared spectroscopy and ultraviolet absorption spectroscopy, the morphology, structural composition and the adsorption of ZnO on the surface of ZnO-CS composite materials were investigated by means of scanning electron microscopy, X-ray diffraction analysis, thermogravimetric analysis. The antibacterial properties of ZnO-CS composite materials were tested by applying ZnO-CS suspension on fresh ripe white rice. The results show that a rod-like ZnO particle film is first grown on the surface of Zn2+-CS. The amino group on the surface of CS is heated to form a cross-linked network with Zn2+ and ZnO, and rod-like ZnO is further grown to form sheet ZnO. ZnO is adsorbed by cross-linking network formed by amino group on CS surface, and ZnO-CS composite is obtained. The fresh ripe white rice treated with ZnO-CS suspension doesn't generate colonies at 6 d, and there is no obvious proliferation of colonies at 12 d, indicating that ZnO-CS composite materials has a good antibacterial property.

Keywords:zinc oxide-chitosan composite materials; liquid phase precipiation method; antibacterial property


参考文献(References):

[1]曹刘奇, 王黎明, 徐丽慧, 等. 球形纳米氧化锌的制备及应用研究[J]. 化工新型材料, 2022, 50(4): 47-51.

[2]WU H H, ZHANG J X. Chitosan-based zinc oxide nanoparticle for enhanced anticancer effect in cervical cancer:a physicochemical and biological perspective[J]. Saudi Pharmaceutical Journal, 2018, 26(2): 205-210.

[3]惠爱平, 马梦婷, 杨芳芳, 等. 季铵化壳聚糖改性ZnO/凹凸棒石纳米复合材料及其抗菌性能[J]. 材料导报, 2022, 36(3): 42-48.

[4]HUSSEIN L, MOSTAFA M H, DARWISH M, et al. Influence of the chemically prepared chitosan/ZnO nanocomposite on the biodegradability,mechanical,and thermal properties of polypropylene[J]. Polymer-Plastics Technology and Materials, 2022, 61(2): 131-144.

[5]徐赵萌, 吴朝凌, 魏旭青, 等. 纳米Ag/ZnO-壳聚糖复合涂膜对带鱼鱼丸的保鲜性能研究[J]. 渤海大学学报(自然科学版), 2020, 41(4): 303-307.

[6]方丹丹, 王利强. 壳聚糖基纳米氧化锌-丁香精油抗菌复合膜对鲜肉保鲜效果[J]. 食品与机械, 2019, 35(11): 108-112.

[7]张晨宇, 王利强. 添加LDH-ZnO的海藻酸钠基抗菌复合材料研究综述[J]. 包装工程, 2020, 41(23): 76-82.

[8]OZYILMAZ G, OZYILMAZ A T, BAYRAM E I, et al. Amperometric glucose biosensor based on homopolymer-chitosan double layered glucose oxidase electrode modified with zinc oxide nanoparticles[J]. Acta Chimica Slovenica, 2019(6): 950-957.

[9]SHEHABELDINE A M, HASHEM A H, WASSEL A R, et al. Antimicrobial and antiviral activities of durable cotton fabrics treated with nanocomposite based on zinc oxide nanoparticles,acyclovir, nanochitosan and clove oil[J]. Applied Biochemistry and Biotechnology, 2021, 194(2): 1-18.

[10]DARWISH M S A, MOSTAFA M H, HUSSEIN L I, et al. Preparation, characterization, mechanical and biodegradation behavior of polypropylene-chitosan/ZnO nanocomposite[J]. Polymer-Plastics Technology and Materials, 2021, 60(15): 1630-1640.

[11]安黛宗, 萧劲东, 李东英, 等. 片状纳米氧化锌单晶的制备和表征[J]. 人工晶体学报, 2004(1): 52-58.

[12]RAJESH B J, GODVIN S V,YUKESH K R, et al. Impact of novel deflocculant ZnO/chitosan nanocomposite film in disperser pretreatment enhancing energy efficient anaerobic digestion: parameter assessment and cost exploration[J]. Chemosphere, 2022, 286(3): 131835.

[13]AGGARWAL S, IKRAM S. Zinc oxide nanoparticles-impregnated chitosan surfaces for covalent immobilization of trypsin: stability and kinetic studies[J]. International Journal of Biological Macromolecules, 2022, 207(7): 205-221.

[14]KUMAR S, MUDAI A, ROY B, et al. Biodegradable hybrid nanocomposite of chitosan/gelatin and green synthesized zinc oxide nanoparticles for food packaging[J]. Foods, 2020, 9(9): 1143-1149.

[15]SHARIFAH N M, SHARIF R, NORHAYATI H, et al. Chitosan as a coating material in enhancing the controlled release behaviour of zinc hydroxide nitrate-sodium dodecylsulphate-bispyribac nanocomposite[J]. Chemical Papers, 2020, 75(3): 1-17.

[16]JAYARAM P, SIVAKUMAR V, PERUMAL K, et al. Chitosan modified zirconium/zinc oxide as a visible light driven photocatalyst for the efficient reduction of hexavalent chromium[J]. International Journal of Biological Macromolecules, 2020, 159(15): 324-332.

[17]WEI X Q, LI X P, WU C L, et al. The modification of in situ SiOx chitosan coatings by ZnO/TiO2 NPs and its preservation properties to silver carp fish balls[J]. Journal of Food Science, 2018, 83(12): 2992-3001.

[18]ELKADY M, SALAMA E, AMER W A, et al. Novel eco-friendly electrospun nanomagnetic zinc oxide hybridized PVA/alginate/chitosan nanofibers for enhanced phenol decontamination[J]. Environmental Science and Pollution Research International, 2022, 27: 1-16.

[19]HOOMAAN J M, SEID M J, MEHRASA A, et al. Fabrication and characterization of graphene oxide-chitosan-zinc oxide ternary nano-hybrids for the corrosion inhibition of mild steel[J]. International Journal of Biological Macromolecules, 2020, 148: 1190-1200.

[20]GEORGE D, MAHESWARI U P, BEGUM M M S K, et al. Synergic formulation of onion peel quercetin loaded chitosan-cellulose hydrogel with green zinc oxide nanoparticles towards controlled release, biocompatibility, antimicrobial and anticancer activity[J]. International Journal of Biological Macromolecules, 2019, 132: 784-794.