刘 龙1, 高爱民1, 程志新2, 刘风军2, 王红松1, 任 伟1, 王昌德1
(1. 甘肃农业大学 机电工程学院, 甘肃 兰州 730070;2. 酒泉市铸陇机械制造有限责任公司, 甘肃 酒泉 735000)
DOI:10.13732/j.issn.1008-5548.2023.01.010
收稿日期: 2022-06-21,修回日期:2022-11-02,在线出版时间:2022-12-01 16:28。
基金项目: 甘肃省自然科学基金项目,编号:21JR7RA817;甘肃省教育厅产业支撑计划项目,编号:2021CYZC-39。
第一作者简介: 刘龙(1998—),男,硕士研究生,研究方向为农业工程技术与装备。E-mail: 872529933@qq.com。
通信作者简介: 高爱民(1981—),男,副教授,博士,硕士生导师,研究方向为农业工程技术与装备。E-mail: gaoaimin@gsau.edu.cn。
摘要:为提高制粒效率,对秸秆的本征参数进行测定,利用离散元软件EDEM和有限元软件ANSYS对制粒过程进行仿真,研究颗粒的速度和所受外力随时间的变化规律,以及颗粒接触数量随时间的变化情况;分析模孔孔径、模孔锥角和颗粒粒径对制粒效果的影响,优化环模结构参数。结果表明:模拟仿真的制粒过程与实际制粒机的颗粒成型过程基本一致,颗粒的速度和所受外力呈现出周期性的波动状态,颗粒的接触数量呈现周期性的、逐渐减小的趋势,秸秆制粒过程表现为周期性的循环挤压过程;当环模孔径为5 mm、模孔锥角为75°、粉料粒径为0.6 mm时,环模表面的磨损变形较轻微,制粒质量和制粒效率最佳。
关键词:秸秆;制粒过程;环模结构;参数优化;仿真模拟
Abstract:In order to improve granulating efficiency, the intrinsic parameters of straw were measured and the granulating process was simulated by using discrete element software EDEM and finite element software ANSYS. The changes of external force number with time, as well as the changes of particle contact number with time were studied. The influence of die hole aperture, die hole cone angle and powder particle size on the granulating effects were analyzed and the structural parameters of ring die were optimized. The results show that simulated granulation process is basically the same as the actual granulation process. The particle velocity and external force show a periodic fluctuation state. The particle contact number has a periodic and gradually decreasing trend. The straw granulating process is a periodic cyclic extrusion process. When the die hole aperture is 5 mm, the die hole cone angle is 75° and the powder particle size is 0.6 mm, the wear deformation of ring die surface is slight and the granulation quality and efficiency are the best.
Keywords:straw; granulating process; ring die structure; parameter optimization; simulation
参考文献(References):
[1]霍丽丽, 姚宗路, 赵立欣, 等. 秸秆综合利用减排固碳贡献与潜力研究[J]. 农业机械学报, 2022, 53(1): 349-359.
[2]肖宏儒, 梅松, 宋志禹, 等. 生物质成型燃料加工关键技术及装备研究[J]. 中国农机化学报, 2014, 35(6): 217-221.
[3]HOLM J K, STELTE W, POSSELT D, et al. Optimization of a multiparameter model for biomass pelletization to investigate temperature dependence and to facilitate fast testing of pelletization behavior[J]. Energy and Fuels, 2011, 25(8): 3706-3711.
[4]AGAR D A, RUDOLFSSON M, KALEN G, et al. A systematic study of ring-die pellet production from forest and agricultural biomass[J]. Fuel Processing Technology, 2018, 180: 47-55.
[5]MAZOR A, OREFICE L, MICHRAFY A, et al. A combined DEM & FEM approach for modelling roll compaction process[J]. Powder Technology, 2018, 337: 3-16.
[6]丁宁, 李海涛, 闫安, 等. 秸秆多级连续冷辊压成型参数优化与试验[J]. 农业机械学报, 2021, 52(10): 196-202, 290.
[7]刘德军, 高翔, 邱硕, 等. 玉米秸秆制板剩余物压缩成型试验[J]. 太阳能学报, 2021, 42(1): 333-341.
[8]蒋清海, 孙宇, 肖宏儒, 等. 旋转挤压成型机理分析与建模[J]. 中国农机化学报, 2018, 39(6): 11-16.
[9]李永奎, 孙月铢, 白雪卫. 玉米秸秆粉料单模孔致密成型过程离散元模拟[J]. 农业工程学报, 2015, 31(20): 212-217.
[10]王韦韦, 蔡丹艳, 谢进杰, 等. 玉米秸秆粉料致密成型离散元模型参数标定[J]. 农业机械学报, 2021, 52(3): 127-134.
[11] XIA X, SUN Y, WU K, et al. Optimization of a straw ring-die briquetting process combined analytic hierarchy process and grey correlation analysis method[J]. Fuel Processing Technology, 2016, 152: 303-309.
[12]DE X, ZHANG J, YANG Y, et al. Fractal prediction of frictional force against the interior surface of forming channel coupled with temperature in a ring die pellet machine[J]. BioResources, 2021, 16(3): 4780.
[13]LARSSON S H, AGAR D A, RUDOLFSSON M, et al. Using the macromolecular composition to predict process settings that give high pellet durability in ring-die biomass pellet production[J]. Fuel, 2021, 283: 119267.
[14]PENG F, XIANG R, FANG F, et al. Analysis of feed pelleting characteristics based on a single pellet press device[J]. International Journal of Agricultural and Biological Engineering, 2022, 15(4): 65-70.
[15]牛智有, 孔宪锐, 沈柏胜, 等. 颗粒饲料破损离散元仿真参数标定[J]. 农业机械学报, 2022, 53(7): 132-140, 207.
[16]CHEN S, DING H, TANG Z, et al. Influence of rice straw forming factors on ring die wear and improved wear prediction model during briquetting[J]. Biosystems Engineering, 2022, 214: 122-137.
[17]王咏梅, 黄晓鹏, 吴劲锋. 不同工艺参数下苜蓿草粉环模制粒机流场的模拟与验证[J]. 农业工程学报, 2017, 33(21): 267-274.
[18]CIOLKOSZ D E, HILTON R, SWACKHAMER C, et al. Farm-scale biomass pelletizer performance for switchgrass pellet production[J]. Applied Engineering in Agriculture, 2015, 31(4): 559-567.
[19]范方宇, 李晗, 邢献军. 温度对玉米秸秆成型颗粒烘焙制备生物炭及其特性的影响[J]. 农业工程学报, 2019, 35(1): 220-226.
[20]NA R, LIU J, CEN H. Random dynamic analysis of ring die pellet mill[J]. International Journal of Performability Engineering, 2019, 15(2): 362.
[21]赵辉, 郭东新, 田河. 环模结构对颗粒料质量和动物生产性能的影响[J]. 饲料研究, 2017(3): 39-42.
[22]周亮, 孙宇, 武凯, 等. 环模式秸秆压块机模具有限元分析及锥角优化[J]. 农机化研究, 2014, 36(6): 224-227, 232.
[23]霍枫, 常颖, 陆晓霞, 等. 粉体颗粒离心压缩仿真及分析[J]. 中国粉体技术, 2022, 28(2): 34-43.