ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第1期
<返回第1期

液-固流化床最小流态化速度的数值模拟与验证

Numerical simulation and verification of the minimum fluidization velocity in a liquid-solid fluidized bed

张鑫镝1, 张卫义1, 李兆亭2, 赵 杰1, 刘阿珍1, 李汉勇1

(1. 北京石油化工学院 机械工程学院, 北京 102627;2. 北京明晖天海气体储运装备销售公司, 北京 101112)


DOI:10.13732/j.issn.1008-5548.2023.01.009

收稿日期: 2022-05-06,修回日期:2022-11-03,在线出版时间:2022-12-02 09:47。

基金项目:国家自然科学基金项目,编号:51774046。

第一作者简介:张鑫镝(1998—),男,硕士研究生,研究方向为过程装备的液-固流态化。E-mail: 2021540004@bipt.edu.cn。

通信作者简介:张卫义(1963—),男,副教授,硕士,硕士生导师,研究方向为过程装备的液-固流态化。E-mail: zhangweiyi@bipt.edu.cn。


摘要:为使用计算颗粒流体力学(CPFD)的数值模拟法代替实验法,建立单管的液-固两相流化床实验系统;实验测量5种颗粒的最小流化速度;应用CPFD方法对单管液-固流化床模型进行数值模拟,比较5种颗粒的最小流态化速度的实验值与模拟值,并进行误差分析,验证数值模拟方法的正确性。结果表明:5种实验颗粒的最小流态化速度实验值分别为0.021 6、 0.036 7、 0.029 3、 0.055 5、 0.084 5 m/s; 2种公式验算值与实验值的最大相对误差小于10%,平均相对误差小于5%,证明实验结果是可靠的;5种模拟颗粒的最小流态化速度模拟修正值分别为0.024、 0.044、 0.041、 0.069、 0.062 m/s;颗粒S1、 S2、 S4、 S5的模拟修正值与颗粒E1、 E2、 E4、 E5的实验值之间的最小流态化速度的误差分别为11.1%、 19.9%、 24.3%、 26.6%,均为正向偏差且在工程允许范围内,证明CPFD数值模拟方法是可靠的;最小流态化速度随固体颗粒的密度和粒径的增大而增大。

关键词:计算颗粒流体力学;数值模拟;液-固两相流;流化床;最小流态化速度

Abstract:In order to use the numerical simulation method of computational particle fluid dynamics(CPFD) instead of the experimental method, a single-tube liquid-solid two-phase fluidized bed experimental system was established.The minimum fluidization velocity of 5 kinds of particles was measured experimentally.The CPFD method was used to simulate the single-tube liquid-solid fluidized bed model. The experimental and simulated values of the minimum fluidization velocity of five kinds of particles were compared, and the error analysis was carried out to verify the correctness of the numerical simulation method.The results show that the minimum fluidization velocity of the five kinds of experimental particles are 0.021 6, 0.036 7, 0.029 3, 0.055 5 and 0.084 5 m/s, respectively.The maximum relative error between the two formulas and the experimental value is less than 10%, and the average relative error is less than 5%, which prove the reliability of the experimental results.The minimum fluidization velocity correction values of the five kinds of simulated particles are 0.024, 0.044, 0.041, 0.069 and 0.062 m/s, respectively.The errors of the minimum fluidization velocity between the simulated correction values of particles S1, S2, S4 and S5 and the experimental values of particles E1, E2, E4 and E5 are respectively 11.1%, 19.9%, 24.3% and 26.6%, which are all positive deviations and within the allowable range of engineering, proving that CPFD numerical simulation method is reliable. The minimum fluidization velocity increases with the increase of solid particle density and particle size.

Keywords:computational particle fluid dynamics; numericals imulation; liquid-solid two-phase flow; fluidized bed; the minimum fluidization velocity


参考文献(References):

[1]JAE W C, SEOKHEE S, SOO Y P, et al. Temperature difference-bed fouling detection in the heat exchanger of gas-solid fluidized beds[J]. Chemical Engineering and Technology, 2022, 45(9): 1623-1630.

[2]CHOKPHOEMPHUN S, EIAMSA-ARD S, PROMVONGE P, et al. Heat transfer of a coil-tube heat exchanger in the freeboard zone of a rice husk fluidized-bed combustor[J]. International Communications in Heat and Mass Transfer, 2021, 127: 1-7.

[3]MA Z W, JANNA M. Analysis of a fluidized-bed particle/supercritical-CO2 heat exchanger in a concentrating solar power system[J]. Journal of Solar Energy Engineering, 2021, 143(3): 1-12.

[4]AIDA F, IBRAHIM D. Thermodynamic assessment of a hybrid particle-based concentrated solar power plant using fluidized bed heat exchanger[J]. Solar Energy, 2019, 179: 236-248.

[5]KOLLBACH J, DAHM W, RAUTENBACH R. Continuous cleaning of heat exchanger with recirculating fluidized bed[J]. Heat Transfer Engineering, 1987, 8(4): 26-32.

[6]RAUTENBACH R, ERDMANN C, KOLBACH J. The fluidized bed technique in the evaporation of wastewaters with severe fouling/scaling potential-latest developments, applications, limitations[J]. Desalination, 1991, 81(1/2/3): 285-298.

[7]PRONK P, CAI F, WITKAMP G J. Prevention of fouling and scaling in stationary and circulating liquid-solid fluidized bed heat exchangers: particle impact measurements and analysis[J]. International Journal of Heat and Mass Transfer, 2009, 52(15/16): 3857-3868.

[8]PRONK P, CAI F, WITKAMP G J. Mitigation of ice crystallization fouling in stationary and circulating liquid-solid fluidized bed heat exchangers[J]. International Journal of Heat and Mass Transfer, 2010, 53(1/2/3): 403-411.

[9]MOHAMMAD A, AHMED A I. Minimum fluidization velocity and defluidization behavior of binary-solid liquid-fluidized beds[J]. Powder Technology, 2002, 126(3): 241-254.

[10]MAWATARI Y, TATEMOTO Y, NODA K. Prediction of minimum fluidization velocity for vibrated fluidized bed[J]. Powder Technology, 2003, 131(1): 66-70.

[11]SHAO Y J, GU J R, ZHONG W Q, et al. Determination of minimum fluidization velocity in fluidized bed at elevated pressures and temperatures using CFD simulations[J]. Powder Technology, 2019, 350: 81-90.

[12]FU Z J, ZHU J, BARGHI S, et al. Minimum fluidization velocity growth due to bed inventory increase in an air dense medium fluidized bed[J]. Chemical Engineering Journal, 2019, 359: 1372-1378.

[13]FU Z J, ZHU J, BARGHI S, et al. Minimum fluidization velocity of binary mixtures of medium particles in the air dense medium fluidized bed[J]. Chemical Engineering Science, 2019, 207: 194-201.

[14]MCLAREN C P, METZGER J P, BOYCE C M,et al. Reduction in minimum fluidization velocity and minimum bubbling velocity in gas-solid fluidized beds due to vibration[J]. Powder Technology, 2021, 382: 566-572.

[15]KRITTIN K, CHAIWAT S, PORNPOTE P, et al. Effect of particle size distributions on minimum fluidization velocity with varying gas temperature[J]. International Journal of Environmental Science and Development,2020,11(11): 524-529.

[16]WU G P, CHEN W, HE Y. Investigation on gas-solid flow behavior in a multistage fluidized bed by using numerical simulation[J]. Powder Technology, 2020, 364: 251-263.

[17]MEHRAN E, SALMAN M, SHAHROKH S. The effect of particle properties on the heat transfer characteristics of a liquid-solid fluidized bed heat exchanger[J]. International Journal of Thermal Sciences, 2016, 102: 111-121.

[18]张仪, 李兵, 白玉龙, 等. 液固流态化动态过程中相间作用力的数值模拟及实验验证[J]. 化工学报, 2020, 71(11): 5129-5139.

[19]姜勇. 基于MP-PIC方法的流态化反应器快速模拟研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2020.

[20]LIANG Y S, ZHANG Y, LI T, et al. A critical validation study on CPFD model in simulating gas-solid bubbling fluidized beds[J]. Powder Technology, 2014: 1-57.

[21]陈罕, 周昆颖, 张卫义. 液-固流态化系统固体颗粒特性研究(1): 颗粒的初始流态化速度vmf[J]. 北京化工大学学报(自然科学版), 2006(1): 94-97.

[22]侯宗宗, 王宾宾, 王要伟, 等. 金属丝网的流场数值模拟分析[J]. 过滤与分离, 2017, 27(2): 20-24.