余 成a, 蔡改贫a,b, 郝书灏a, 赵 鑫a, 罗小燕a,b
(江西理工大学 a. 机电工程学院; b. 江西省矿冶机电工程技术研究中心, 江西 赣州 341000)
DOI:10.13732/j.issn.1008-5548.2023.01.008
收稿日期: 2022-05-19,修回日期:2022-10-31,在线出版时间:2022-11-18 16:08。
基金项目:江西省重点研发计划项目,编号:20181ACE50034;江西省教育厅科学技术项目,编号:GJJ200827。
第一作者简介:余成(1998—),男,硕士研究生,研究方向为智能矿山装备技术及物料破碎动力学。E-mail: 1256201920@qq.com。
通信作者简介:蔡改贫(1964—),男,教授,博士,博士生、 硕士生导师,研究方向为智能矿山装备技术、智能监控与工业机器人、物料破碎动力学等。E-mail: 1123615286@qq.com。
摘要:以黑钨矿石为研究对象进行超声振动加载试验,通过筛分实验得到矿石破碎后颗粒的粒度分布曲线,计算颗粒的分形维数,利用分形维数定量描述矿石破碎过程,分析分形维数与静载荷、超声波输出功率及颗粒的平均粒度之间的关系。结果表明:当静载荷由100 N增加至500 N时,颗粒的平均粒度由19.513 2 mm减小至5.040 0 mm,分形维数由1.725 2增大至2.541 9;当超声波输出功率由1.56 kW增大至2.60 kW时,颗粒的平均粒度由19.672 9 mm减小至5.040 0 mm,分形维数由1.912 7增大至2.541 9;分形维数分别与静载荷、超声波输出功率及平均粒度之间呈现良好的线性相关性,可以直观地定量描述矿石的破碎过程。
关键词:超声振动加载试验;筛分实验;粒度分布;分形维数;矿石破碎过程;颗粒分形特征
Abstract:Taking the wolframite ore as the research object, the ultrasonic vibration loading test was carried out. The particle size distribution curve of the crushed ore was obtained through screening test. The fractal dimension of the particle was calculated and the ore crushing process was quantitatively described by using the fractal dimension. The relationship between the fractal dimension and static load, ultrasonic output power and the average particle size were analyzed. The results show that when the static load increase from 100 N to 500 N, the average particle size decrease from 19.513 2 mm to 5.040 0 mm, and the fractal dimension increase from 1.725 2 to 2.541 9. When the ultrasonic output power increase from 1.56 kW to 2.60 kW, the average particle size decrease from 19.672 9 mm to 5.040 0 mm, and the fractal dimension increase from 1.912 7 to 2.541 9. Fractal dimension has a good linear correlation with static load, ultrasonic output power and average particle size respectively, and can intuitively and quantitatively describe the ore crushing process.
Keywords:ultrasonic vibration loading test; screening experiment; particle size distribution; fractal dimension; ore crushing process; fractal characteristics of particles
参考文献(References):
[1]ATALAH A. Effect of rock trenching vibrations on nearby structures[J]. Journal of Construction Engineering and Management, 2008, 134: 234-241.
[2]XU G Y, YAN C B. Numerical simulation for influence of excavation and blasting vibration on stability of mined-out area[J]. Journal of Central South University of Technology, 2006, 13: 577-583.
[3]尹崧宇, 赵大军. 超声波振动下不同应力条件对岩石强度影响的试验[J]. 吉林大学学报(地球科学版), 2019, 49(3): 756-762.
[4]刘莉莎, 李坤, 张红红. 超声波振动频率对岩石破碎规律的影响[J]. 长春工程学院学报(自然科学版), 2017, 18(4): 81-83, 98.
[5]肖晓春, 丁鑫, 潘一山, 等. 围压作用下煤岩材料超声致裂规律研究[J]. 材料导报, 2015, 29(16): 132-136, 150.
[6]韩君鹏, 赵大军, 张书磊, 等. 基于离散元的超声波振动辅助TBM滚刀碎岩分析[J]. 钻探工程, 2021, 48(3): 46-55.
[7]谢和平, 高峰, 周宏伟, 等. 岩石断裂和破碎的分形研究[J]. 防灾减灾工程, 2003, 23(4): 1-9.
[8]DENG Y, CHEN M, JIN Y, et al. Theoretical analysis and experimental research on the energy dissipation of rock crushing based on fractal theory[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 231-239.
[9]MANDELBROT B B. Self-affine fractals and fractal dimension[J]. Physica Scripta, 1985, 32(4): 257-260.
[10]NING S, YANG, Y, LU J, et al. The fractal characteristics of coal sample’s fragments subjected to cyclic loading[J]. Geotech Geol Eng, 2019, 37: 2267-2281.
[11]江宁, 尹大伟, 杨永杰, 等. 破碎矸石干湿循环长期承载变形及分形特征[J]. 采矿与安全工程学报, 2020, 37(1): 176-182.
[12]纪杰杰, 李洪涛, 吴发名, 等. 冲击荷载作用下岩石破碎分形特征[J]. 振动与冲击, 2020, 39(13): 176-183, 214.
[13]杨阳, 李祥龙, 杨仁树, 等. 低温岩石冲击破碎分形特征与断口形貌分析[J]. 北京理工大学学报, 2020, 40(6): 632-639, 682.
[14]蔡改贫, 肖贤煌, 许琴, 等. 基于分形理论建立低频振动挤压破碎能耗预测模型[J]. 有色金属(选矿部分), 2016(4): 58-62.
[15]刘石, 许金余, 白二雷, 等. 基于分形理论的岩石冲击破坏研究[J]. 振动与冲击, 2013, 32(5): 163-166.
[16]许金余, 刘石. 大理岩冲击加载试验碎块的分形特征分析[J]. 岩土力学, 2012, 33(11): 3225-3229.
[17]GAO M Z, ZHANG J G, LI S W, et al. Calculating changes in fractal dimension of surface cracks to quantify how the dynamic loading rate affects rock failure in deep mining[J]. Journal of Central South University, 2020, 27(10): 3013-3024.
[18]李臣. 振动慢剪破碎机破碎性能分析及实验研究[D]. 赣州: 江西理工大学, 2018.
[19]盛建龙, 刘新波, 朱瑞赓. 分形理论及岩石破碎的分形特征[J]. 武汉冶金科技大学学报(自然科学版), 1999, 22(1): 8-10.