李心怡1,3,陆丽芳1,麻淳雅1,2,雷明婧1,朱 健1
(1.中南林业科技大学 环境科学与工程学院,湖南 长沙 410004;2.衢州市生态环境局龙游分局,浙江 衢州 324400;3.中国石化股份有限公司 长岭分公司水务部,湖南 岳阳 414000)
DOI:10.13732/j.issn.1008-5548.2023.01.006
收稿日期: 2022-04-16,修回日期:2022-05-12,在线出版时间:2022-11-19 17:53。
基金项目:湖南省重点研发计划项目,编号:2017SK2273、2019SK2191;湖南省高校创新平台开放基金项目,编号:19K107;湖南省教育厅科学研究项目,编号:19C1900。
第一作者简介:李心怡(1998—),女,硕士研究生,研究方向为土壤污染修复。E-mail: 891253424@qq.com。
通信作者简介:雷明婧(1987—),女,实验师,硕士,研究方向为环境功能材料的制备与应用。E-mail: casper10262003@yahoo.com.cn。
摘要:以湿地植物美人蕉(MBC)、再力花(ZBC)和旱伞草(HBC)为原材料,采用热裂解法于300、 500、 700℃下制备生物炭,应用全自动元素分析仪、扫描电子显微镜、红外光谱等手段表征分析生物炭理化性质,采用静态吸附法系统研究生物炭对镉的吸附特性。结果表明:制备温度对生物质炭的理化性质、表面形貌和矿物成分有很大影响;中温(500℃)、高温(700℃)裂解生物炭对镉的吸附性能优于低温(300℃)裂解生物炭的,500℃裂解生物炭吸附性能最好,对Cd2+吸附容量均值可达96.00 mg·g-1,极值可达108.28 mg·g-1,且吸附容量从大到小为ZBC、 MBC、 HBC; 500℃裂解湿地植物基生物炭对Cd2+的吸附平衡时间为30 min左右,适宜的投加量和较大的溶液pH、离子初始质量浓度、反应温度有利于生物炭对Cd2+的吸附,对Cd2+吸附过程更符合Freundlich等温吸附模型和拟二级动力学模型,且属于优惠吸附;裂解温度的升高可以促进生物炭芳香化,改善孔隙结构,提高比表面积,进而提升生物炭活性,中高温裂解生物炭对镉具有良好的吸附性能。
关键词:湿地植物;生物炭;裂解温度;镉;吸附
Abstract:The biochar was prepared by thermal decomposition method at 300, 500, and 700 ℃ using wetland plants as raw materials including Canna indica L(MBC), Thalia dealbata Fraser(ZBC) and Cyperus involucratus Rottboll(HBC). The physicochemical properties of the biochar were characterized by automatic elemental analyzer, scanning electron microscope and infrared spectroscopy, and the adsorption characteristics of cadmium on the biochar were systematically studied by static adsorption method. The results show that the pyrolysis temperature has a great influence on the physicochemical properties, surface morphology and mineral composition of biochar. The biochar that prepared at medium temperature(500 ℃) and high temperature(700 ℃) pyrolysis temperature has better cadmium adsorption capacity than the low temperature(300 ℃). The pyrolyzed biochar on 500 ℃ has the highest adsorption capacity, its average adsorption capacity for Cd2+ reaches 96.00 mg·g-1, the extreme value reaches 108.28 mg·g-1, and the adsorption capacity from large to small is ZBC, MBC, HBC. The adsorption equilibrium time of pyrolyzed plant-based biochar on 500 ℃ to Cd2+ is about 30 mins. The appropriate dosage and larger solution pH, initial ion concentration and reaction temperature have positive effects on the Cd2+ adsorption. The adsorption process of Cd2+ by biochar is in line with the Freundlich isothermal adsorption model and quasi-two-stage kinetic model, and it belongs to preferential adsorption. The higher pyrolysis temperature can promote the aromatization of biochar, improve the pore structure and increase the specific surface area, which in turn enhances the activity of biochar. The biochar pyrolyzed at medium and high temperature has better adsorption capacity for cadmium.
Keywords:wetland plants; biochar; pyrolysis temperature; cadmium; adsorption
参考文献(References):
[1]LEHMANN J, GAUNT J, RONDON M. Bio-char sequestration in terrestrial ecosystems: a review[J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11(2): 403-427.
[2]何甜甜, 王静, 符云鹏, 等. 等碳量添加秸秆和生物炭对土壤呼吸及微生物生物量碳氮的影响[J]. 环境科学, 2021, 42(1): 450-458.
[3]王萌萌, 周启星. 生物炭的土壤环境效应及其机制研究[J]. 环境化学, 2013, 32(5): 768-780.
[4]惠锦卓, 张爱平, 刘汝亮, 等. 添加生物炭对灌淤土土壤养分含量和氮素淋失的影响[J]. 中国农业气象, 2014, 35(2): 156-161.
[5]BEESLEY L, MORENO-JIMÉNEZ E, GOMEZ-EYLES J L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J]. Environmental Pollution, 2010, 158(6): 2282-2287.
[6]张杰, 贺敏婕, 陈可欣, 等. 马缨丹生物炭对水中Pb(Ⅱ)污染的吸附研究[J]. 现代化工, 2021, 41(7): 122-127.
[7]MARRIS E. Black is the new green[J]. Nature, 2006, 442: 624-626.
[8]陈志良, 袁志辉, 黄玲, 等. 生物炭来源、性质及其在重金属污染土壤修复中的研究进展[J]. 生态环境学报, 2016, 25(11): 1879-1884.
[9]ZHANG J, LIU J, LIU R L. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate[J]. Bioresource Technology, 2015, 176: 288-291.
[10]林珈羽, 张越, 刘沅, 等. 不同原料和炭化温度下制备的生物炭结构及性质[J]. 环境工程学报, 2016, 10(6): 3200-3206.
[11]吕宏虹, 宫艳艳, 唐景春, 等. 生物炭及其复合材料的制备与应用研究进展[J]. 农业环境科学学报, 2015, 34(8): 1429-1440.
[12]国家质量技术监督局. 木质活性炭试验方法pH值的测定: GB/T 12496.7—1999[S]. 北京: 中国标准出版社, 1999.
[13]国家质量技术监督局. 木炭和木炭实验方法: GB/T 17664—1999[S]. 北京: 中国标准出版社, 1999.
[14]中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 焦炭工业分析测定方法: GB/T 2001—1991[S]. 北京: 中国标准出版社, 1991.
[15]薛广钊, 侯贵华, 乔仁静, 等. 稻壳基高比表面积介孔活性炭的制备与表征[J]. 环境工程学报, 2016, 10(1): 4.
[16]崔孝强. 水体修复植物基生物炭的环境应用及其机理研究[D]. 杭州: 浙江大学, 2018.
[17]HE X, LIU Z, NIU W, et al. Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues[J]. Energy, 2018, 143: 746-756.
[18]占长林, 高越, 詹佳伟, 等. 裂解温度对不同原材料生物炭理化特性的影响[J]. 湖北理工学院学报, 2020, 36(1): 10-15.
[19]王晨. 4种原料制备的生物炭对土壤Zn、 Cd形态及土壤酶活性的影响[D]. 泰安: 山东农业大学, 2016.
[20]SINHA R, KUMAR S, SINGH R K. Production of biofuel and biochar by thermal pyrolysis of linseed seed[J]. Biomass Conversion and Biorefinery, 2013, 3(4): 327-335.
[21]TSAI W T, HUANG C N, CHEN H R, et al. Pyrolytic conversion of horse manure into biochar and its thermochemical and physical properties[J]. Waste and Biomass Valorization, 2015, 6(6): 975-981.
[22]K H M, VLADIMIR S, YIN C K, et al. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar[J]. Journal of Environmental Management, 2011, 92(1): 223-228.
[23]AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: a review[J]. Chemosphere, 2014, 99: 19-33.
[24]ZHANG X, ZHANG P, YUAN X, et al. Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar[J]. Bioresource Technology, 2020, 296: 122318.
[25]简敏菲, 高凯芳, 余厚平. 不同裂解温度对水稻秸秆制备生物炭及其特性的影响[J]. 环境科学学报, 2016, 36(5): 1757-1765.
[26]王章鸿, 郭海艳, 沈飞, 等. 热解条件对生物炭性质和氮、 磷吸附性能的影响[J]. 环境科学学报, 2015, 35(9): 2805-2812.
[27]CHANDRA S, BHATTACHARYA J. Influence of temperature and duration of pyrolysis on the property heterogeneity of rice straw biochar and optimization of pyrolysis conditions for its application in soils[J]. Journal of Cleaner Production, 2019, 215: 1123-1139.
[28]刘丽, 范世锁, 张锡涛, 等. 城市污泥和水稻秸秆生物炭中多环芳烃的含量及毒性评价[J]. 生态环境学报, 2020, 29(9): 1874-1882.
[29]HILBER I, BASTOS A C, LOUREIRO S, et al. The different faces of biochar: contamination risk versus remediation tool[J]. Journal of Environmental Engineering and Landscape Management, 2017, 25(2): 86-104.
[30]刘雪琴. 植物秸秆改性制备的纤维素黄原酸钙盐吸附特性与工艺优化研究[D]. 武汉: 华中农业大学, 2014.