李昇原1,2,黄永鹏2,唐 慧2,汪春江2,李秀兰1,陈 博2
(1. 四川轻化工大学 机械工程学院,四川 宜宾 644000;2. 国民核生化灾害防护国家重点实验室,北京 102205)
DOI:10.13732/j.issn.1008-5548.2023.01.005
收稿日期:2022-05-09,修回日期:2022-11-05,在线出版时间:2022-12-02 11:32。
基金项目:青年科技英才基础研究项目,编号:2021C4411;四川省高校重点实验室项目,编号:2021JXY06。
第一作者简介:李昇原(1995—),男,硕士研究生,研究方向为微纳米材料的制备与应用。E-mail:756622525@qq.com。
通信作者简介:李秀兰(1977—),女,副教授,博士,硕士生导师,研究方向为先进材料与表面技术。E-mail:1853123510@qq.com。陈博(1983—),男,副研究员,博士,硕士生导师,研究方向为药物粉体制备与应用。E-mail:NBC_BoChen@163.com。
摘要:采用反溶剂法制备白蛋白纳米颗粒;通过单因素实验和Z分综合评价法对比不同交联剂的作用效果;研究白蛋白质量浓度、醇水体积比、脱溶温度、溶剂pH、交联时间等工艺参数对白蛋白纳米颗粒性能的影响,确定优选工艺条件;运用浸渍吸附-冷冻干燥法构建白蛋白-奥曲肽微粉,考察微粉的载药量和体外溶出性能。结果表明:戊二醛为优选交联剂;当白蛋白质量浓度为10 g/L、醇水体积比为2∶1、脱溶温度为20℃、溶剂pH为9、交联时间为24 h时,制备白蛋白纳米颗粒的工艺条件最优,所制备白蛋白纳米颗粒的平均粒径为(100.6±2.5) nm,多分散指数为0.13±0.01,储存稳定性好;白蛋白-奥曲肽微粉能保持白蛋白载体原有的球状规则形貌,持续释药时间为2 160 min,具有较好的体外释放性能。
关键词:白蛋白;奥曲肽;纳米颗粒;微粉;缓释性能
Abstract:Albumin nanoparticles were prepared by reverse solvent method. The effects of different crosslinking agents were compared by single factor experiment and Z-score comprehensive evaluation method.The effects of albumin mass concentration, the volumn ratio of alcohol to water, desolubilization temperature, solvent pH, crosslinking time and other process parameters on the performance of albumin nanoparticles were studied to determine the optimal process conditions.Albumin octreotide micropowder was prepared by impregnation adsorption-freeze-drying method. The drug loading capacity and in vitro dissolution performance of the micropowder were investigated.The results show that glutaraldehyde is the preferred crosslinking agent.When the albumin mass concentration is 10 g/L, the volume ratio of alcohol to water is 2∶1, the desolubilization temperature is 20 ℃, the solvent pH is 9, and the cross-linking time is 24 h, the preparation conditions of the albumin nanoparticles are the best. The average particle size of the prepared albumin nanoparticles is(100.6±2.5) nm, the polydispersion index is 0.13±0.01, and the storage stability was good. Albumin-octreotide micropowder maintains the original spherical morphology of albumin carrier, and the continuous release time is 2 160 min, showing good in vitro release performance.
Keywords:albumin; octreotide; nanoparticle; micropowder; sustained-release properties
参考文献(References):
[1]唐川, 刘俊成, 周兴智, 等. 蛋白多肽类药物载体应用研究进展[J]. 沈阳药科大学学报, 2020, 37(1): 51-56.
[2]CAO S J, LV Z Q, GUO S, et al. An update-prolonging the action of protein and peptide drugs[J]. Journal of Drug Delivery Science and Technology, 2021, 61: 102124.
[3]TONG T, WANG L Y, YOU X R, et al. Nano and microscale delivery platforms for enhanced oral peptide/protein bio-availability[J]. Biomaterials Science, 2020, 21(8): 5804-5823.
[4]丁海波, 金莉莉, 王秋雨. 多肽类药物药代动力学特点及其代谢机制研究进展[J]. 中国药理学与毒理学杂志, 2018, 32(3): 233-240.
[5]丁源, 陈新, 涂家生, 等. 蛋白及多肽类药物长效化制剂学技术研究进展[J]. 中国药科大学学报, 2020, 51(4): 433-440.
[6]LEWIS A L, RICHARD J. Challenges in the delivery of peptide drugs: an industry perspective[J]. Therapeutic Delivery, 2015, 6(2): 149-163.
[7]周建平. 纳米技术在药物递送中的应用与展望[J]. 中国药科大学学报, 2020, 51(4): 379-382.
[8]CHOUDHARY S, WAGHMARE S, KAMBLE H. A review:sustained release dosage form[J]. World Journal of Pharmaceutical Research, 2021, 10(11): 2146-2157.
[9]商宏华, 申有青. 血清白蛋白纳米药物载体的制备及应用[J]. 功能高分子学报, 2013, 26(3): 317-324.
[10]徐欢, 周美玲, 葛琳, 等. 人血清白蛋白在蛋白多肽类药物长效化中的应用[J]. 中国生物工程杂志, 2019, 39(1): 82-89.
[11]KARAMI E, BEHDANI M, KAZEMI-LOMEDASHT F. Albumin nanoparticles as nanocarriers for drug delivery: focusing on antibody and nanobody delivery and albumin-based drugs[J]. Journal of Drug Delivery Science and Technology, 2020, 55: 101471.
[12]常书华. 白蛋白作为药物载体的研究[D]. 济南: 齐鲁工业大学, 2020.
[13]KIANFAR E. Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles[J]. Journal of Nanobiotechnology, 2021, 19(1): 159.
[14]SPADA A, EMAMI J, TUSZYNSKI J A, et al. The uniqueness of albumin as a carrier in nanodrug delivery[J]. Molecular Pharmaceutics, 2021, 18(5): 1862-1894.
[15]汤晓雷. 多西他赛白蛋白纳米递药系统的研究[D]. 南京: 南京大学, 2016.
[16]何佳彧, 梁菊, 宣茂松, 等. 提高多肽体内稳定性的有效策略[J]. 药学学报, 2020, 55(1): 25-32.
[17]黄健彬, 魏川, 王安荣. 奥曲肽联合白蛋白治疗重症急性胰腺炎临床疗效观察[J]. 智慧健康, 2020, 5(15): 158-159.
[18]向童欣, 黄永鹏, 唐慧, 等. 高效液相色谱法定量分析奥曲肽[J]. 化学分析计量, 2020, 29(2): 79-82.
[19]国家药典委员会. 中华人民共和国药典(2020版, 第四部)[M]. 北京: 中国医药科技出版社, 2020: 132-141.
[20]李艳, 蓝锦晓, 罗成. 白蛋白纳米颗粒的制备研究进展[J]. 中国生物医学工程学报, 2019, 38(1): 112-119.
[21]龙湘宇. 光催化交联构建用于药物递送的全蛋白质纳米微球[D]. 大连: 大连理工大学, 2019.
[22]WEBER C, KREUTER J, LANGER K. Desolvation process and surface characteristics of HSA-nanoparticles[J]. International Journal of Pharmaceutics, 2000, 196(2): 197-200.
[23]JAHANBAN-ESFAHLAN A, DASTMALCHI S, DAVARAN S. A simple improved desolvation method for the rapid preparation of albumin nanoparticles[J]. International Journal of Biological Macromolecules, 2016, 91: 703-709.
[24]SALEHIABAR M, NOSRATI H, JAVANI E, et al. Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery[J]. International Journal of Biological Macromolecules, 2018, 115: 83-89.
[25]SHI H D, LIN S M, WANG Y, et al. Ruthenium photosensitizer anchored gold nanorod for synergistic photodynamic and photothermal therapy[J]. Dalton Transactions, 2022, 51: 6846-6854.
[26]陈瑶, 孙鹏, 刘买利, 等. 离子对人血清白蛋白影响的1H NMR研究[J]. 波谱学杂志, 2017, 34(3): 266-274.
[27]GALISTEO-GONZALEZ F, MOLINA-BOLIVAR J A. Systematic study on the preparation of BSA nanoparticles[J]. Colloids and Surfaces B: Biointerfaces, 2014, 123: 286-292.
[28]MAHJUB R, DORKOOSH F A, RAFIEE-TEHRANI M, et al. Oral self-nanoemulsifying peptide drug delivery systems: impact of lipase on drug release[J]. Journal of Microencapsulation, 2015, 32(4): 401-407.