ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第1期
<返回第1期

粉体料仓设计及卸料特性综述

Powder silo design and discharge characteristics: a review

吴 震1a, 王利强1, 徐立敏2, 高伟俊2

(1. 江南大学 a. 机械工程学院; b. 江苏省食品先进制造装备技术重点实验室,江苏 无锡 214122;2. 江苏创新包装科技有限公司,江苏 扬州 225600)


DOI:10.13732/j.issn.1008-5548.2023.01.003

收稿日期: 2022-10-23,修回日期:2022-11-06,在线出版时间:2022-11-19 19:35。

基金项目:中央高校基本科研业务费专项资金项目,编号:JUSRP21115;江苏省食品先进制造装备技术重点实验室自主资助基金项目,编号:FMZ201902。

第一作者简介:吴震(1998—),男,硕士研究生,研究方向为包装工艺与机械。E-mail: wzhen19980718@163.com。

通信作者简介:王利强(1977—),男,教授,博士,博士生导师,研究方向为包装机械。E-mail: wlqcom@163.com。


摘要:综述粉体料仓的设计要素,包括料仓的流型、大小与形状、材料,并基于Jenike理论对整体流料仓的设计进行分析。总结重力卸料、振动卸料、气力卸料、机械搅动卸料等粉体料仓卸料特性,以及重力卸料的卸料流率、仓内压力特点和仓内改流体对重力卸料的影响等。提出料仓设计中料仓的流型是重点考虑的因素,整体流可作为设计时的首选流型。认为仓内改流体是一种常用的改善粉体流动的结构,具有广泛的应用前景,可用于改善粉体在料仓的流动环境及流动区域,增大粉体的流动速率以及降低卸料时的过载压力;振动卸料、气力卸料、机械搅动卸料是常见的料仓外力助流装置,选择合适的助流方式时应综合考虑工况要求、经济性、安全性等因素;复杂料仓颗粒运动的研究将会成为未来工程界主要的热点与难点。

关键词:料仓设计;卸料流率;压力分布;改流体;助流方式

Abstract:The design elements of powder silo were reviewed, including flow pattern, size and shape, and material. The design of integral flow silo was analyzed based on Jenike theory. The discharge characteristics of powder hopper such as gravity discharge, vibration discharge, pneumatic discharge and mechanical agitation discharge, as well as the discharge flow rate and pressure in hopper of gravity discharge and influence of fluid modification in hopper were summarized. It is proposed that the flow pattern of the silo is the primary consideration in the design of the silo, and the overall flow can be the first choice for the designer. It is considered that changing the fluid in the hopper is a commonly used structure to improve the powder flow and has a wide application prospect. It can be used to improve the flow environment and flow area of the powder in the hopper, increase the flow rate of the powder and reduce the overload pressure during discharge. Vibration unloading, pneumatic unloading and mechanical stirring unloading are common external flow-supporting devices in silos. The appropriate flow-supporting methods should be selected considering the requirements of working conditions, economy, safety and other factors. The study of particle motion in complex silos will become the main hotspot and difficulty in the future engineering field.

Keywords:silo design; discharge flow rate; pressure distribution; silo insert; flow aid


参考文献(References):

[1]邹佳兴. 基于压差推动的粉体料仓下料过程强化研究[D]. 上海: 华东理工大学, 2020.

[2]李忠毅, 李勇, 姜开忠. 粉体料仓存在的问题及解决方法[J]. 起重运输机械, 2022(6): 29-35.

[3]惠顺利, 钱静, 李东阳. 一种粉粒料包装机料仓的设计研究[J]. 包装与食品机械, 2015, 33(2): 35-38.

[4]陆海峰, 阮琥, 曹嘉琨, 等. 细粉下料过程的气固流体动力学作用分析[J]. 化工学报, 2021, 72(11): 5533-5542.

[5]RAMIREZ-GOMEZA. The discrete element method in silo/bin research:recent advances and future trends[J]. Particulate Science and Technology, 2020, 38(2): 210-227.

[6]孙珊珊, 袁竹林. 料仓内稠密粉体卸料流动特性研究[J]. 热能动力工程, 2019, 34(6): 91.

[7]GARG V, MALLICK S S, GARCIA-TRINANES P, et al. An investigation into the flowability of fine powders used in pharmaceutical industries[J]. Powder Technology, 2018, 336: 375-382.

[8]陆海峰. 煤粉在通气料仓中的下料及其影响因素研究[D]. 上海: 华东理工大学, 2012.

[9]陈长冰. 基于整体流型的粉体料仓设计分析[J]. 化工设备与管道, 2006(3): 34-38.

[10] CARSON J W, WILMS H. Development of an international standard for shear testing[J]. Powder technology, 2006, 167(1): 1-9.

[11]廖荣福, 邱生祥, 潘仁湖. Jenike型剪切测试仪在颗粒物料流动性测试中的应用[J]. 硫磷设计与粉体工程, 2011(6): 23-29.

[12]惠顺利, 钱静, 李东阳. 基于Jenike理论的粉粒料流动性测试及料仓设计[J]. 包装工程, 2014, 35(23): 37-42.

[13]鲁磊明, 邓国栋, 汪庆华, 等. 超细含能固体粉料流动性测试及加料仓设计[J]. 中国粉体技术, 2016, 22(6): 26-31.

[14]OGINNI O, FASINA O. Theoretical estimation of silo design parameters for fractionated loblolly pine grinds-moisture content and particle size effects[J]. Industrial Crops and Products, 2018, 123: 379-385.

[15]SALEHI H, BERRY R, FARNISH R, et al. Temperature and time consolidation effect on the bulk flow properties and arching tendency of a detergent powder[J]. Chemical Engineering & Technology, 2020, 43(1): 150-156.

[16]孙秉礼. 粉体料仓的卸料问题[J]. 水泥, 2014(3): 53-56.

[17]原方, 王辉, 胡玉霞, 等. 筒仓分类方法评价[J]. 东南大学学报: 英文版, 2009, 25(3): 381-384.

[18]王学文, QIN Y, 李娟莉, 等. 散料在锥仓中的静压接触状态与影响因素[J]. 农业工程学报, 2015, 31(16): 65-70.

[19]BORG L T. Erfahrungen aus scherversuchen mit schüttgütern der chemie[J]. Chemie Ingenieur Technik, 1981, 53(8): 662-663.

[20]李志义, 王淑兰, 丁信伟. 粉体物料和料斗材料对料仓流型的影响[J]. 化学工业与工程技术, 2000(1): 12-14,1.

[21]BROWN R L. Exploratory study of the flow of granules through apertures[J]. Transactions of the Insitution of Chemical Engineers, 1959, 37: 108-119.

[22]BEVERLOO W A, LENIGER H A, VAN DE VELDE J. The flow of granular solids through orifices[J]. Chemical engineering science, 1961, 15(3/4): 260-269.

[23]UNAC R O, VIDALES A M, BENEGAS O A, et al. Experimental study of discharge rate fluctuations in a silo with different hopper geometries[J]. Powder technology, 2012, 225: 214-220.

[24]MYERS M E, SELLERS M. Chemical engineering tripos, part 2, research project report[J]. University of Cambridge, Cambridge, 1978.

[25]OLDAL I, KEPPLER I, CSIZMADIA B, et al. Outflow properties of silos: the effect of arching[J]. Advanced Powder Technology, 2012, 23(3): 290-297.

[26]BROWN R L. Minimum energy theorem for flow of dry granules through apertures[J]. Nature, 1961, 191: 458-461.

[27]CREWDSON B J, ORMOND A L, NEDDERMAN R M. Air-impeded discharge of fine particles from a hopper[J]. Powder Technology, 1977, 16(2): 197-207.

[28]钟佳, 吕慧, 曹贵平, 等. 细颗粒在锥形和平底料仓中的重力卸料特性[J]. 化工进展, 2017, 36(11): 3940-3946.

[29]ZHENG Q J, XIA B S, PAN R H, et al. Prediction of mass discharge rate in conical hoppers using elastoplastic model[J]. Powder technology, 2017, 307: 63-72.

[30]陆海峰, 曹嘉琨, 郭晓镭, 等. 基于颗粒间相互作用的细颗粒粉体料仓下料过程分析[J]. 化工学报, 2021, 72(8): 4047-4054.

[31]MORGENEYER M, RAMíREZ-GOMEZ A, POLETTO M, et al. Particle technology as a uniform discipline? Towards a holistic approach to particles, their creation, characterisation, handling and processing[J]. Chemical Engineering Research and Design, 2019, 146: 162-165.

[32]SALEH K, GOLSHAN S, ZARGHAMI R. A review on gravity flow of free-flowing granular solids in silos-basics and practical aspects[J]. Chemical Engineering Science, 2018, 192: 1011-1035.

[33]赵光明, 石鑫, 丁圣潇, 等. 筒仓散体物料压力研究现状与新进展[J]. 河南建材, 2021(4): 38-41.

[34]XU Z, LIANG P, CHENG Y, et al. Reduction mechanism of the normal stress exerted on silo wall with chutes during eccentric discharge[J]. Powder Technology, 2022, 407: 117659.

[35]郭秀琦. 料仓粉体出料过程中应力分布及流动特性研究[D]. 南京: 东南大学, 2019.

[36]WALKER D M. An approximate theory for pressures and arching in hoppers[J]. Chemical Engineering Science, 1966, 21(11): 975-997.

[37]WALTERS J K. A theoretical analysis of stresses in silos with vertical walls[J]. Chemical Engineering Science, 1973, 28(1): 13-21.

[38]JENIKE A W. Bin loads-part 2: Concepts ASME[J]. Journal of Engineering for Industry, 1973, 95(1): 1-5.

[39]JENIKE A W. A theory of flow of particulate solids in converging and diverging channels based on a conical yield function[J]. Powder technology, 1987, 50(3): 229-236.

[40]陈阳阳, 郭秀琦, 梁财, 等. 料仓内粉体静态应力分布特性[J]. 化工进展, 2019, 38(4): 1681-1687.

[41]原方, 刘海林, 程远浩, 等. 深浅仓卸料压力离散元数值模拟研究[J]. 河南工业大学学报 (自然科学版), 2020, 41(1): 117-123.

[42]XU Z, LIANG P. Modified lateral pressure formula of shallow and circular silo considering the elasticities of silo wall and storage materials[J]. Scientific Reports, 2022, 12(1): 1-10.

[43]孙栋. 料仓改流体对粉体下料影响的研究[D]. 上海: 华东理工大学, 2020.

[44]JOHANSON J R. The placement of inserts to correct flow in bins[J]. Powder Technology, 1968, 1(6): 328-333.

[45]JOHANSON J R. The use of flow-corrective inserts in bins[J]. Journal of Manufacturing Science and Engineering, 1966, 88(2): 224-230.

[46]肖国先, 徐德龙, 陈延信, 等. 料仓中仓型改流体作用的数值模拟[J]. 计算机与应用化学, 2005(7): 12-16.

[47]陈延信, 徐德龙, 肖国先. 仓内粉体流动现象与改流体的作用效果分析[J]. 中国粉体技术, 2000(增1): 174-176.

[48]谭援强, 肖湘武, 郑军辉, 等. 锥形改流体下部孔径对筒仓卸料流态的影响[J]. 农业工程学报, 2016, 32(19): 82-87.

[49]DING S, DYRØY A, KARLSEN M, et al. Experimental investigation of load exerted on a double-cone insert and effect of the insert on pressure along walls of a large-scale axisymmetrical silo[J]. Particulate Science and Technology, 2011, 29(2): 127-138.

[50]DING S, LI H, OOI J Y, et al. Prediction of flow patterns during silo discharges using a finite element approach and its preliminary experimental verification[J]. Particuology, 2015, 18: 42-49.

[51]SUN D, LU H, CAO J, et al. Flow mechanisms and solid flow rate prediction of powders discharged from hoppers with an insert[J]. Powder Technology, 2020, 367: 277-284.

[52]CHUNG Y C, KUO T C, HSIAU S S. Effect of various inserts on flow behavior of Fe2O3 beads in a three-dimensional silo subjected to cyclic discharge: part I: exploration of transport properties[J]. Powder Technology, 2022, 400: 117220.

[53]翟志轩, 熊丽敏, 苏文献. 料仓卸料流动特性及结构强度数值模拟研究[J]. 化工设备与管道, 2021, 58(2): 35-42.

[54]WOJCIK M, TEJCHMAN J, ENSTAD G G. Confined granular flow in silos with inserts: full-scale experiments[J]. Powder Technology, 2012, 222: 15-36.

[55]刘茼, 刘桂林. 浅谈粉体料仓防架桥装置的应用[J]. 轻工科技, 2019, 35(10): 50-51.

[56]操江, 程冬林. 207141942U: 一种仓壁振动装置[P]. 2018-03-27.

[57]李振, 徐成. 213263865U: 一种新型仓壁振动器[P]. 2021-05-25.

[58]谢屹. 211002806U: 一种具有空气锤的下料仓[P]. 2020-07-14.

[59]金泽荣, 陈俊, 孟碧琼, 等. 213976162U: 一种振动料仓下料器[P]. 2021-08-17.

[60]ZHANG C, QIU C, PU C, et al. The mechanism of vibrations-aided gravitational flow with overhanging style in hopper[J]. Powder technology, 2018, 327: 291-302.

[61]KOLLMANN T, TOMAS J. Effect of applied vibration on silo hopper design[J]. Particulate science and technology, 2002, 20(1): 15-31.

[62]武永桥, 管声启, 柴彩彩. 基于EDEM的固体粉末物料振动下料过程分析[J]. 西安工程大学学报, 2017, 31(2): 278-282, 288.

[63]HUNT M L, WEATHERS R C, LEE A T, et al. Effects of horizontal vibration on hopper flows of granular materials[J]. Physics of fluids, 1999, 11(1): 68-75.

[64]KUMAR R, JANA A K, GOPIREDDY S R, et al. Effect of horizontal vibrations on mass flow rate and segregation during hopper discharge: discrete element method approach[J]. Sādhanā, 2020, 45(1): 1-13.

[65]JAFARI A, ABOLGHANDI A, GHARIBI A, et al. Effects of local vibration on silo discharge and jamming: Employing an experimental approach[J]. Journal of Particle Science & Technology, 2018, 4(2): 91-100.

[66]PASCOT A, MOREL J Y, ANTONYUK S, et al. Discharge of vibrated granular silo: a grain scale approach[J]. Powder Technology, 2022, 397: 116998.

[67]DU J, LIU C, TONG L, et al. Effects of vibrations on tilted silo discharge[J]. Chemical Engineering Research and Design, 2021, 171: 247-253.

[68]赵敏. 215246998U: 气力清仓装置漏斗[P]. 2021-12-21.

[69]吴佑俭, 徐进军, 吉万健, 等. 高黏性物料粉矿仓气力清堵助流系统的设计与应用[J]. 金属矿山, 2021(7): 198-205.

[70]LU H, GUO X, GONG X, et al. Experimental study on aerated discharge of pulverized coal[J]. Chemical engineering science, 2012, 71: 438-448.

[71]ZHU L, LU H, POLETTO M, et al. Hopper discharge of cohesive powders using pulsated airflow[J]. AIChE Journal, 2020, 66(7): 16240.

[72]ZHU L, LU H, GUO X, et al. Multi-level arch characteristics and flow enhancement regulation of nano powders discharged from silo[J]. Chemical Engineering Science, 2022, 252: 117492.