(1. 江南大学 a. 机械工程学院; b. 江苏省食品先进制造装备技术重点实验室,江苏 无锡 214122;2. 江苏创新包装科技有限公司,江苏 扬州 225600)
参考文献(References):
[1]邹佳兴. 基于压差推动的粉体料仓下料过程强化研究[D]. 上海: 华东理工大学, 2020.
[2]李忠毅, 李勇, 姜开忠. 粉体料仓存在的问题及解决方法[J]. 起重运输机械, 2022(6): 29-35.
[3]惠顺利, 钱静, 李东阳. 一种粉粒料包装机料仓的设计研究[J]. 包装与食品机械, 2015, 33(2): 35-38.
[4]陆海峰, 阮琥, 曹嘉琨, 等. 细粉下料过程的气固流体动力学作用分析[J]. 化工学报, 2021, 72(11): 5533-5542.
[5]RAMIREZ-GOMEZA. The discrete element method in silo/bin research:recent advances and future trends[J]. Particulate Science and Technology, 2020, 38(2): 210-227.
[6]孙珊珊, 袁竹林. 料仓内稠密粉体卸料流动特性研究[J]. 热能动力工程, 2019, 34(6): 91.
[7]GARG V, MALLICK S S, GARCIA-TRINANES P, et al. An investigation into the flowability of fine powders used in pharmaceutical industries[J]. Powder Technology, 2018, 336: 375-382.
[8]陆海峰. 煤粉在通气料仓中的下料及其影响因素研究[D]. 上海: 华东理工大学, 2012.
[9]陈长冰. 基于整体流型的粉体料仓设计分析[J]. 化工设备与管道, 2006(3): 34-38.
[10] CARSON J W, WILMS H. Development of an international standard for shear testing[J]. Powder technology, 2006, 167(1): 1-9.
[11]廖荣福, 邱生祥, 潘仁湖. Jenike型剪切测试仪在颗粒物料流动性测试中的应用[J]. 硫磷设计与粉体工程, 2011(6): 23-29.
[12]惠顺利, 钱静, 李东阳. 基于Jenike理论的粉粒料流动性测试及料仓设计[J]. 包装工程, 2014, 35(23): 37-42.
[13]鲁磊明, 邓国栋, 汪庆华, 等. 超细含能固体粉料流动性测试及加料仓设计[J]. 中国粉体技术, 2016, 22(6): 26-31.
[14]OGINNI O, FASINA O. Theoretical estimation of silo design parameters for fractionated loblolly pine grinds-moisture content and particle size effects[J]. Industrial Crops and Products, 2018, 123: 379-385.
[15]SALEHI H, BERRY R, FARNISH R, et al. Temperature and time consolidation effect on the bulk flow properties and arching tendency of a detergent powder[J]. Chemical Engineering & Technology, 2020, 43(1): 150-156.
[16]孙秉礼. 粉体料仓的卸料问题[J]. 水泥, 2014(3): 53-56.
[17]原方, 王辉, 胡玉霞, 等. 筒仓分类方法评价[J]. 东南大学学报: 英文版, 2009, 25(3): 381-384.
[18]王学文, QIN Y, 李娟莉, 等. 散料在锥仓中的静压接触状态与影响因素[J]. 农业工程学报, 2015, 31(16): 65-70.
[19]BORG L T. Erfahrungen aus scherversuchen mit schüttgütern der chemie[J]. Chemie Ingenieur Technik, 1981, 53(8): 662-663.
[20]李志义, 王淑兰, 丁信伟. 粉体物料和料斗材料对料仓流型的影响[J]. 化学工业与工程技术, 2000(1): 12-14,1.
[21]BROWN R L. Exploratory study of the flow of granules through apertures[J]. Transactions of the Insitution of Chemical Engineers, 1959, 37: 108-119.
[22]BEVERLOO W A, LENIGER H A, VAN DE VELDE J. The flow of granular solids through orifices[J]. Chemical engineering science, 1961, 15(3/4): 260-269.
[23]UNAC R O, VIDALES A M, BENEGAS O A, et al. Experimental study of discharge rate fluctuations in a silo with different hopper geometries[J]. Powder technology, 2012, 225: 214-220.
[24]MYERS M E, SELLERS M. Chemical engineering tripos, part 2, research project report[J]. University of Cambridge, Cambridge, 1978.
[25]OLDAL I, KEPPLER I, CSIZMADIA B, et al. Outflow properties of silos: the effect of arching[J]. Advanced Powder Technology, 2012, 23(3): 290-297.
[26]BROWN R L. Minimum energy theorem for flow of dry granules through apertures[J]. Nature, 1961, 191: 458-461.
[27]CREWDSON B J, ORMOND A L, NEDDERMAN R M. Air-impeded discharge of fine particles from a hopper[J]. Powder Technology, 1977, 16(2): 197-207.
[28]钟佳, 吕慧, 曹贵平, 等. 细颗粒在锥形和平底料仓中的重力卸料特性[J]. 化工进展, 2017, 36(11): 3940-3946.
[29]ZHENG Q J, XIA B S, PAN R H, et al. Prediction of mass discharge rate in conical hoppers using elastoplastic model[J]. Powder technology, 2017, 307: 63-72.
[30]陆海峰, 曹嘉琨, 郭晓镭, 等. 基于颗粒间相互作用的细颗粒粉体料仓下料过程分析[J]. 化工学报, 2021, 72(8): 4047-4054.
[31]MORGENEYER M, RAMíREZ-GOMEZ A, POLETTO M, et al. Particle technology as a uniform discipline? Towards a holistic approach to particles, their creation, characterisation, handling and processing[J]. Chemical Engineering Research and Design, 2019, 146: 162-165.
[32]SALEH K, GOLSHAN S, ZARGHAMI R. A review on gravity flow of free-flowing granular solids in silos-basics and practical aspects[J]. Chemical Engineering Science, 2018, 192: 1011-1035.
[33]赵光明, 石鑫, 丁圣潇, 等. 筒仓散体物料压力研究现状与新进展[J]. 河南建材, 2021(4): 38-41.
[34]XU Z, LIANG P, CHENG Y, et al. Reduction mechanism of the normal stress exerted on silo wall with chutes during eccentric discharge[J]. Powder Technology, 2022, 407: 117659.
[35]郭秀琦. 料仓粉体出料过程中应力分布及流动特性研究[D]. 南京: 东南大学, 2019.
[36]WALKER D M. An approximate theory for pressures and arching in hoppers[J]. Chemical Engineering Science, 1966, 21(11): 975-997.
[37]WALTERS J K. A theoretical analysis of stresses in silos with vertical walls[J]. Chemical Engineering Science, 1973, 28(1): 13-21.
[38]JENIKE A W. Bin loads-part 2: Concepts ASME[J]. Journal of Engineering for Industry, 1973, 95(1): 1-5.
[39]JENIKE A W. A theory of flow of particulate solids in converging and diverging channels based on a conical yield function[J]. Powder technology, 1987, 50(3): 229-236.
[40]陈阳阳, 郭秀琦, 梁财, 等. 料仓内粉体静态应力分布特性[J]. 化工进展, 2019, 38(4): 1681-1687.
[41]原方, 刘海林, 程远浩, 等. 深浅仓卸料压力离散元数值模拟研究[J]. 河南工业大学学报 (自然科学版), 2020, 41(1): 117-123.
[42]XU Z, LIANG P. Modified lateral pressure formula of shallow and circular silo considering the elasticities of silo wall and storage materials[J]. Scientific Reports, 2022, 12(1): 1-10.
[43]孙栋. 料仓改流体对粉体下料影响的研究[D]. 上海: 华东理工大学, 2020.
[44]JOHANSON J R. The placement of inserts to correct flow in bins[J]. Powder Technology, 1968, 1(6): 328-333.
[45]JOHANSON J R. The use of flow-corrective inserts in bins[J]. Journal of Manufacturing Science and Engineering, 1966, 88(2): 224-230.
[46]肖国先, 徐德龙, 陈延信, 等. 料仓中仓型改流体作用的数值模拟[J]. 计算机与应用化学, 2005(7): 12-16.
[47]陈延信, 徐德龙, 肖国先. 仓内粉体流动现象与改流体的作用效果分析[J]. 中国粉体技术, 2000(增1): 174-176.
[48]谭援强, 肖湘武, 郑军辉, 等. 锥形改流体下部孔径对筒仓卸料流态的影响[J]. 农业工程学报, 2016, 32(19): 82-87.
[49]DING S, DYRØY A, KARLSEN M, et al. Experimental investigation of load exerted on a double-cone insert and effect of the insert on pressure along walls of a large-scale axisymmetrical silo[J]. Particulate Science and Technology, 2011, 29(2): 127-138.
[50]DING S, LI H, OOI J Y, et al. Prediction of flow patterns during silo discharges using a finite element approach and its preliminary experimental verification[J]. Particuology, 2015, 18: 42-49.
[51]SUN D, LU H, CAO J, et al. Flow mechanisms and solid flow rate prediction of powders discharged from hoppers with an insert[J]. Powder Technology, 2020, 367: 277-284.
[52]CHUNG Y C, KUO T C, HSIAU S S. Effect of various inserts on flow behavior of Fe2O3 beads in a three-dimensional silo subjected to cyclic discharge: part I: exploration of transport properties[J]. Powder Technology, 2022, 400: 117220.
[53]翟志轩, 熊丽敏, 苏文献. 料仓卸料流动特性及结构强度数值模拟研究[J]. 化工设备与管道, 2021, 58(2): 35-42.
[54]WOJCIK M, TEJCHMAN J, ENSTAD G G. Confined granular flow in silos with inserts: full-scale experiments[J]. Powder Technology, 2012, 222: 15-36.
[55]刘茼, 刘桂林. 浅谈粉体料仓防架桥装置的应用[J]. 轻工科技, 2019, 35(10): 50-51.
[56]操江, 程冬林. 207141942U: 一种仓壁振动装置[P]. 2018-03-27.
[57]李振, 徐成. 213263865U: 一种新型仓壁振动器[P]. 2021-05-25.
[58]谢屹. 211002806U: 一种具有空气锤的下料仓[P]. 2020-07-14.
[59]金泽荣, 陈俊, 孟碧琼, 等. 213976162U: 一种振动料仓下料器[P]. 2021-08-17.
[60]ZHANG C, QIU C, PU C, et al. The mechanism of vibrations-aided gravitational flow with overhanging style in hopper[J]. Powder technology, 2018, 327: 291-302.
[61]KOLLMANN T, TOMAS J. Effect of applied vibration on silo hopper design[J]. Particulate science and technology, 2002, 20(1): 15-31.
[62]武永桥, 管声启, 柴彩彩. 基于EDEM的固体粉末物料振动下料过程分析[J]. 西安工程大学学报, 2017, 31(2): 278-282, 288.
[63]HUNT M L, WEATHERS R C, LEE A T, et al. Effects of horizontal vibration on hopper flows of granular materials[J]. Physics of fluids, 1999, 11(1): 68-75.
[64]KUMAR R, JANA A K, GOPIREDDY S R, et al. Effect of horizontal vibrations on mass flow rate and segregation during hopper discharge: discrete element method approach[J]. Sādhanā, 2020, 45(1): 1-13.
[65]JAFARI A, ABOLGHANDI A, GHARIBI A, et al. Effects of local vibration on silo discharge and jamming: Employing an experimental approach[J]. Journal of Particle Science & Technology, 2018, 4(2): 91-100.
[66]PASCOT A, MOREL J Y, ANTONYUK S, et al. Discharge of vibrated granular silo: a grain scale approach[J]. Powder Technology, 2022, 397: 116998.
[67]DU J, LIU C, TONG L, et al. Effects of vibrations on tilted silo discharge[J]. Chemical Engineering Research and Design, 2021, 171: 247-253.
[68]赵敏. 215246998U: 气力清仓装置漏斗[P]. 2021-12-21.
[69]吴佑俭, 徐进军, 吉万健, 等. 高黏性物料粉矿仓气力清堵助流系统的设计与应用[J]. 金属矿山, 2021(7): 198-205.
[70]LU H, GUO X, GONG X, et al. Experimental study on aerated discharge of pulverized coal[J]. Chemical engineering science, 2012, 71: 438-448.
[71]ZHU L, LU H, POLETTO M, et al. Hopper discharge of cohesive powders using pulsated airflow[J]. AIChE Journal, 2020, 66(7): 16240.
[72]ZHU L, LU H, GUO X, et al. Multi-level arch characteristics and flow enhancement regulation of nano powders discharged from silo[J]. Chemical Engineering Science, 2022, 252: 117492.