ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第1期
<返回第1期

煅烧温度及硼酸用量对α-Al2O3粉体的影响

Effects of calcination temperature and boric acid dosage onα-Al2O3powde

李立倍1, 张锦化1, 刘学新2, 王景然1, 李 文1, 韩兵强1

(1. 武汉科技大学 省部共建耐火材料与冶金国家重点实验室, 湖北 武汉 430081;2. 湖北斯曼新材料股份有限公司, 湖北 黄冈 438400)


DOI:10.13732/j.issn.1008-5548.2023.01.014

收稿日期: 2022-06-14,修回日期:2022-11-19,在线出版时间:2022-12-02 16:42。

基金项目: 国家自然科学基金项目,编号:51802235;湖北省教育厅科研计划项目,编号:B2020019。

第一作者简介: 李立倍(1996—),女,硕士研究生,研究方向为硼化物陶瓷粉体的制备。E-mail:1791315126@qq.com。

通信作者简介:张锦化(1981—),男,副教授,博士,硕士生导师,研究方向为刚玉-尖晶石微纳米粉体、硼化物陶瓷纳米粉体的制备。E-mail: zhangjinhua@wust.edu.cn。


摘 要:以油茶果壳、硅粉和酚醛树脂为原料,经热压成型、高温原位反应烧结工艺制备油茶果壳基SiC陶瓷。采用热重-示差扫描量热(thermogravimetric-differential scanning calorimetry, TG-DSC)分析研究油茶果壳粉和酚醛树脂的裂解行为;通过X射线衍射仪、扫描电子显微镜、三点弯曲法和阿基米德排水法表征SiC陶瓷物相组成和微观组织,分析SiC陶瓷的抗压强度和孔隙率,基于表征分析结果探讨Si含量对油茶果壳基SiC陶瓷物相组成、微观结构、抗压强度和孔隙率的影响。结果表明:油茶果壳基SiC陶瓷由主晶相β-SiC和游离的Si组成,孔隙结构发达,孔洞呈蜂窝状,大小均匀,孔隙率高(>50%),抗压强度良好(12~18 MPa),随Si含量的增加,孔隙率与抗压强度先增大后减小。

关键词:工业氧化铝;煅烧温度;硼酸用量;转相率

Abstract:Camellia oleifera shell, silica powder and phenolic resin were adopted as raw materials to prepare camellia oleifera shell-based SiC ceramics by hot-press forming and high temperature in-situ reaction sintering process. Thermogravimetric-differential scanning calorimetry(TG-DSC) analysis was applied to study the cracking behavior of camellia oil shell powder and phenolic resin. X-ray diffractometer, scanning electron microscope three-point bending method and Archimedes drainage method were used to characterize phase composition and microstructure of the SiC ceramics, and analyse compressive strength and porosity of the SiC ceramics, based on the above results to study the effect of Si content on phase composition, microstructure, compressive strength and porosity of SiC ceramics. Experimental results show that the camellia oleifera shell-based SiC ceramics are composed of the main crystalline phase β-SiC and free Si and have a well pore structure where the pore is honeycomb and uniform in size. The camellia oleifera shell-based SiC ceramics have high porosity(>50%) and good compressive strength(12~18 MPa). With the increasing of Si content, the porosity and the compressive strength of the camellia oleifera shell-based SiC ceramics increase first and then decrease. These results indicates that the camellia oleifera shell-based SiC ceramics has a promising development in the fields of hot gas filtration.

Keywords:industrial alumina; calcination temperature; boric acid dosage; ratio of phase rotation


参考文献(References):

[1]HOU Q D, LUO X D, XIE Z P, et al. Preparation and characterization of microporous magnesia-based refractory[J]. International Journal of Applied Ceramic Technology, 2020, 17(6): 2629-2637.

[2]GHOSH A, SARKAR R, MUKHERJEE B, et al. Effect of spinel content on the properties of magnesia-spinel composite refractory[J]. Journal of the European Ceramic Society, 2004, 24(7): 2079-2085.

[3]WANG Z M, XIE H W, ZHANG Y, et al. Formation free energy of sodium stannate measured using β-β″-A2O3 ceramic electrolyte[J]. Rare Metals, 2017, 36(11): 905-911.

[4]CAO W B, MAO X, YUAN Y, et al. Sintering kinetics of disperse ultrafine equiaxed α-Al2O3 nanoparticles[J]. Journal of the European Ceramic Society, 2017, 37(13): 4005-4013.

[5]刘奎, 李翔春, 张成荣, 等. 研磨参数对α-Al2O3粉体粒度与分布的影响[J]. 中国粉体技术, 2018, 24(2): 73-80.

[6]ZHANG X H, LIN C G, CUI S, et al. Microstructure and properties of Al2O3 dispersion-strengthened copper fabricated by reactive synthesis process[J]. Rare Metals, 2014, 33(2): 191-195.

[7]刘海清, 杨晓峰, 陈志萍, 等. 制备方法对氧化铝相变路径及粉体形貌的影响[J].中国陶瓷, 2022, 58(2): 20-25.

[8]KHALIL N M, HASSAN M B, EWAIS E M M, et al. Sintering, mechanical and refractory properties of MA spinel prepared via co-precipitation and sol-gel techniques[J]. Journal of Alloys and Compounds, 2010, 496(1/2): 600-607.

[9]CHEN R Y, LI Y B, ZHAO Y, et al. Effect of inorganic acid on the phase transformation of alumina[J]. Journal of Alloys and Compounds, 2017, 699: 170-175.

[10]王丽, 罗婷, 陈新春, 等. 球形微纳米颗粒的制备及其作为润滑油添加剂的抗磨减摩性能研究进展[J]. 中国粉体技术, 2020, 26(1): 53-60.

[11]WU Z S, SHEN Y D, DONG Y, et al. Study on the morphology of α-Al2O3 precursor prepared by precipitation method[J]. Journal of Alloys and Compounds, 2007, 467(1): 600-604.

[12]HUANG J S, CHEN C L, HUANG Z L, et al. Preparation and growth mechanism of the flower-like whiskers of γ-, θ-, and α-Al2O3 phases by homogeneous precipitation/calcination method[J]. Ceramics International, 2021, 47(12): 16943-16949.

[13]田清波, 代金山, 吕志杰. NH4F含量及煅烧工艺对氧化铝相变及α-Al2O3微观形貌的影响[J]. 人工晶体学报, 2015, 44(12): 3737-3741.

[14]ANDREW R. Refining of alumina: the bayer process[M]. Cambridge:Woodhead Publishing, 2019: 49-70.

[15]LEVIN I, BRANDON D. Metastable alumina polymorphs: crystal structures and transition sequences[J]. Journal of the American Ceramic Society, 1998, 81(8): 1995-2012.

[16]SHEN Y Q, LI D Y, XU Y, et al. Influence mechanism of halide additives on phase conversion, morphology, and purity of alumina powders prepared by solid-phase calcination method[J]. Ceramics International, 2022, 48(6): 8403-8408.

[17]AMBARYAN G N, VLASKIN M S, BURYAKOVSKAYA O A, et al. Advanced manufacturing process of ultrahigh-purity α-Al2O3[J]. Sustainable Materials and Technologies, 2018, 17: 00065.

[18]李刚. 低钠α-Al2O3粉体的合成工艺研究[J]. 山东陶瓷, 2017, 40(5): 3-5.

[19]MA J H, ZHAO H H, YU J, et al. Potential application of Bayer alumina with high Na2O content[J]. Materials Letters, 2022, 312: 131703.

[20]RIELLO D, ZETTERSTROM C, PARR C, et al. AlF3 reaction mechanism and its influence on α-Al2O3mineralization[J]. Ceramics International, 2016, 42(8): 9804-9814.

[21]DUDNIK E V, SHEVCHENKO A V, RUBAN A K, et al. Low-temperature synthesis of α-Al2O3[J]. Powder Metallurgy and Metal Ceramics, 2008, 47(7/8): 9-14.

[22]MISIRLI Z, ERKALFA H, OZKAN Q T. Effect of B2O3 addition on the sintering of α-Al2O3[J]. Ceramics International, 1996, 22(1): 33-37.

[23]李峰克. 硼酸在α-Al2O3烧成中的作用影响分析[J]. 铝镁通讯, 2016(3): 6-8.

[24]中华人民共和国工业和信息化部. 煅烧α型氧化铝中α-Al2O3含量的测定 X-射线衍射法: YS/T 976—2014[S]. 北京: 中国标准出版社, 2014.

[25]王雷雷, 王勤隆, 李晶, 等. X射线衍射法测定纳米氧化铝的平均晶粒尺寸[J]. 无机盐工业, 2021, 53(4): 86-89.