朱宇轩a,钟栋青b,于 航a,高 宇b,王路明a,b
(盐城工学院 a. 机械工程学院;b. 材料科学与工程学院,江苏 盐城 224051)
DOI:10.13732/j.issn.1008-5548.2023.02.017
收稿日期:2022-06-11,修回日期:2023-02-21,在线出版时间:2023-03-02 09:20。
基金项目:江苏省重点研发计划项目,编号:BE2021684。
第一作者简介:朱宇轩(1997—),男,硕士研究生,研究方向为智能化设计理论与技术。E-mail:zyx787133264@163.com。
通信作者简介:王路明(1962—),男,教授,博士,硕(博)士生导师,研究方向生态建筑材料制造与应用技术。E-mail:wlm@ycit.com。钟栋青(1981—),男,副教授,博士研究生,研究方向为装配式秸秆建筑生产技术。E-mail:zdq811004@ycit.edu.cn。
摘要:综述带扬料叶片(板)回转筒内物料的运动规律,概括回转筒内物料运动的影响因素,总结回转筒内物料的运动模型,提出将运动模型分为周向和轴向物料运动模型,并探讨各类研究方法的主要作用及其评价指标的意义。认为带扬料叶片(板)回转筒内物料的周向运动需通过叶片持有量、料帘密度等评价参数展开研究,轴向运动主要基于轨道颗粒模型(PTM)对物料运动进行预测。未来对回转筒内物料的运动研究可以从以下3个方面展开:物料颗粒在滚筒底面的滑动对整个运动过程的影响;阻力系数在轴向运动中对物料颗粒运动的影响;空气阻力对筒内轻质物料的运动影响。
关键词:回转筒;扬料叶片;周向运动;轴向运动;运动模型
Abstract:The motion law of material in the rotary cylinder with lifting blade(plate)was summarized. The influencing factors of material movement in the rotary cylinder were concluded. The motion model of material in the rotary cylinder was put forward to be divided into circumferential and axial material movement models and the main functions of various research methods and the significance of evaluation indexes were discussed. It is considered that the circumferential motion of the material in the rotary cylinder with lifting blade(plate)should be studied by evaluating parameters such as blade holding and material curtain density, while the axial motion should be mainly modeled based on the orbital particle model(PTM). It is believed that the future research on the movement of materials in the rotating cylinder can be carried out from the following three aspects which are the influence of the sliding of material particles on the bottom of the cylinder on the whole movement process, the influence of drag coefficient on the three-dimensional motion of material particles in axial motion and the influence of air resistance on the movement of light materials in the cylinder.
Keywords:rotary cylinder;lifting blade;circumferential motion;axial motion;motion model
参考文献(References):
[1]JUNIOR M P, DA SILVA M T, GUIMARAES F G, et al.Energy savings in a rotary dryer due to a fuzzy multivariable control application[J].Drying Technology, 2022, 40(6): 1196-1209.
[2]姜胜强, 叶一璇, 阳恩勇, 等.回转筒内沙石物料混合均匀性的数值模拟[J].计算力学学报, 2019, 36(5): 603-609.
[3]WANG L, HUANG X Y, LI X T, et al.Simulation of heavy metals behaviour during co-processing of fly ash from municipal solid waste incineration with cement raw meal in a rotary kiln[J].Waste management(New York), 2022, 144(1): 246-254.
[4]ZHANG M, ZHANG Y, MA D, et al.Numerical investigation on the heat transfer of plastic waste pyrolysis in a rotary furnace[J].Chemical Engineering Journal, 2022, 445: 136686.
[5]GENG F, YUAN Z, YAN Y, et al.Numerical simulation on mixing kinetics of slender particles in a rotary dryer[J].Powder Technology, 2009, 193(1): 50-58.
[6]徐悦, 李然, 修文正, 等.颗粒材料形状分选的量化模型综述[J].力学与实践, 2022, 44(1): 1-11.
[7]SEIDENBECHER J, HERZ F, MEITZNER C, et al.Temperature analysis in flighted rotary drums and the influence of operating parameters[J].Chemical Engineering Science, 2021, 229: 115972.
[8]REZAEI H, SOKHANSANJ S.A review on determining the residence time of solid particles in rotary drum dryers[J].Drying Technology, 2021, 39(11): 1762-1772.
[9]郭永亮.搅拌设备烘干筒叶片对骨料加热特性影响研究[D].西安: 长安大学, 2013.
[10]黄文景.变产量干燥滚筒扬料叶片料帘分布实验研究[J].建设机械技术与管理, 2018, 31(12): 84-89.
[11]BURLACUA I, TANASE M, ILNCA C, et al.Optimizing the trajectory of aggregates in drying units from the asphalt plants[J].IOP Conference Series: Materials Science and Engineering, 2022, 1262(1): 12003.
[12]HILL K M, GIOIA G, AMARAVADI D, et al.Moon patterns, sun patterns and wave breaking in rotating granular mixtures[J].Complexity, 2005, 10(4): 79-86.
[13]WISSLER E H.On the applicability of the Taylor-Aris axial diffusion model to tubular reactor calculations[J].Chemical Engineering Science, 1969, 24(3): 527-539.
[14]杨东晓, 李亚晓, 任好雨, 等.化学反应器轴向扩散模型的应用分析[J].化工技术与开发, 2017, 46(4): 32-35.
[15]王漫漫, 何庆中, 王佳, 等.滚筒内灰渣停留时间的数值模拟实验[J].科学技术与工程, 2022, 22(9): 3551-3556.
[16]BAKER C G J.The design of flights in cascading rotary dryers[J].Drying Technology, 1988, 6(4): 631-653.
[17]马晓录, 张勇.转筒干燥机活动折弯抄板设计方法研究[J].河南工业大学学报(自然科学版), 2013, 34(5): 91-95.
[18]张勇,马晓录.转筒干燥机活动折弯抄板持料量的计算研究[J].河南工业大学学报(自然科学版), 2013, 34(3): 94-97.
[19]张勇, 马晓录.转筒设计载荷下污泥干燥的抄板特性研究[J].木材加工机械, 2014, 25(2): 34-38.
[20]黄志刚.转筒式干燥器直角抄板的模拟计算[J].北京工商大学学报(自然科学版), 2003, 1(2): 56-58.
[21]黄志刚,毛志怀.转筒式干燥器圆弧抄板的模拟计算[J].机械设计与制造, 2004, 21(1): 45-46.
[22]REVOL D, BRIENS C L, CHABAGNO J M.The design of flights in rotary dryers[J].Powder Technology, 2001, 121(2/3): 230-238.
[23]LOMINE F, HELLOU M, ROQUES Y.An analysis of optimal segmented flight design in a rotary dryer[J].Powder Technology, 2022, 407: 117594.
[24]MELLMANN J, SPECHT E, LIU X.Prediction of rolling bed motion in rotating cylinders[J].AIChE Journal, 2004, 50(11): 2783-2793.
[25]GLIKIN P G.Transport of solids through flighted rotating drums[J].Transactions of the Institution of Chemical Engineers, 1978, 56(2): 120-126.
[26]尹凤交, 杜滨, 赵改菊, 等.转筒干燥机抄板撒料过程模拟及抄板优化[J].山东化工, 2019, 48(3): 158-161.
[27]DEBACQ M, VITU S, ABLITZER D, et al.Transverse motion of cohesive powders in flighted rotary kilns: experimental study of unloading at ambient and high temperatures[J].Powder Technology, 2013, 245: 56-63.
[28]KARALI M A, SPECHT E, MELLMANN J, et al.Granular transport through flighted rotary drums operated at optimum-loading: Mathematical model[J].Drying Technology, 2020, 38(4): 495-505.
[29]CHEN S J, YANG J H.Simulation and experiments on the drying outcome of drying drums[J].International Journal of Precision Engineering and Manufacturing, 2016, 17(1): 109-117.
[30]李海鹏.沥青搅拌设备干燥滚筒热效率分析和结构优化设计[D].西安: 长安大学, 2011.
[31]SONG Y, THIBAULT J, KUDRA T.Dynamic characteristics of solids transportation in rotary dryers[J].Drying Technology, 2003, 21(5): 755-773.
[32]张晨光, 焦生杰, 谢立扬, 等.沥青搅拌设备烘干筒料帘密度建模及仿真[J].华中科技大学学报(自然科学版), 2017, 45(5): 55-60.
[33]刘晓东, 王晨, 黄建华, 等.基于DOE的烘干滚筒叶片参数优化[J].工程机械, 2020, 51(4): 48-54.
[34]王海霞, 陈炳贵.沥青搅拌设备滚筒对流区骨料料帘的分布形式[J].筑路机械与施工机械化, 2019, 36(4): 107-111.
[35]ARDALANI E, YOHANNES B, BORGHARD W G, et al.DEM analysis of the thermal treatment of granular materials in a rotary drum equipped with baffles[J].Chemical Engineering Science, 2022, 251: 117476.
[36]HALIDAN M, CHANDRATILLEKE G R, Chan S L I, et al.Prediction of the mixing behaviour of binary mixtures of particles in a bladed mixer[J].Chemical Engineering Science, 2014, 120: 37-48.
[37]吴铭禧, 房怀英, 杨建红, 等.变产量下扬料叶片对干燥滚筒料帘分布的影响特性[J].华侨大学学报(自然科学版), 2019, 40(1): 9-13.
[38]雷先明, 李蔚华, 张喆.直刮板对滚筒内D型二元物料混合的影响[J].机械工业标准化与质量, 2021(3): 26-29.
[39]桂泽东, 买买提明·艾尼, 古丽巴哈尔·托乎提, 等.DEM法分析滚筒内壁结构对混合行为的影响[J].饲料工业, 2018, 39(21): 5-9.
[40]HE S Y, GAN J Q, PINSON D, et al.Particle shape-induced axial segregation of binary mixtures of spheres and ellipsoids in a rotating drum[J].Chemical Engineering Science, 2021, 235: 116491.
[41]MORI Y, SAKAI M.Advanced DEM simulation on powder mixing for ellipsoidal particles in an industrial mixer[J].Chemical Engineering Journal, 2022, 429: 132415.
[42]SPURLING R J, DAVIDSON J F, SCOTT D M.Flow of granular material through rotating cylinders: modelling transients[J].MRS Online Proceedings Library, 2000, 627(1): 1-6.
[43]PICHLER M, HADDADI B, JORDAN C, et al.Dataset for the simulated biomass pyrolysis in rotary kilns with varying particle residence time distributions[J].Data in Brief, 2021, 39: 107603.
[44]PICHLER M, HADDADI B, JORDAN C, et al.Influence of particle residence time distribution on the biomass pyrolysis in a rotary kiln[J].Journal of Analytical and Applied Pyrolysis, 2021, 158: 105171.
[45]REIS M H, VARNER T P, LEIBFARTH F A.The influence of residence time distribution on continuous-flow polymerization[J].Macromolecules, 2019, 52(9): 3551-3557.
[46]LEBAS E, HANROT F, ABLIZTER D, et al.Experimental study of residence time, particle movement and bed depth profile in rotary kilns[J].The Canadian Journal of Chemical Engineering, 1995, 73(2): 173-180.
[47]YANG S, ZHANG L, LUO K, et al.DEM investigation of the axial dispersion behavior of a binary mixture in the rotating drum[J].Powder Technology, 2018, 330: 93-104.
[48]LIAO C C, OU S F, CHEN S L, et al.Influences of fine powder on dynamic properties and density segregation in a rotating drum[J].Advanced Powder Technology, 2020, 31(4): 1702-1707.
[49]SHERRITT R G, CHAOUKI J, MEHROTRA A K, et al.Axial dispersion in the three-dimensional mixing of particles in a rotating drum reactor[J].Chemical Engineering Science, 2003, 58(2): 401-415.
[50]高维岳.轴向扩散模型—闭式模型中的一级反应与停留时间分布[J].化工冶金, 1989(4): 55-66.
[51]WESTERTERP K R, DIL′MAN V V, KRONBERG A E.Wave model for longitudinal dispersion: development of the model[J].AIChE Journal, 1995, 41(9): 2013-2028.
[52]张兴法, 徐超, 韩效钊.轴向扩散模型的近似计算法[J].合肥工业大学学报(自然科学版), 1997(5): 44-48.
[53]DURY C M, RISTOW G H.Radial segregation through axial migration[J].Europhysics Letters, 1999, 48(1): 296-297.
[54]SCOTT D M, LU G, THIRD J R, et al.Axial dispersion of granular material in inclined rotating cylinders with bulk flow: geometric model for 50% fill[J].Powder Technology, 2016, 290: 91-96.
[55]周敬之.回转筒发酵秸秆碎料的物料动热及出料提醇研究[D].北京: 北京科技大学, 2018.
[56]NIENG A S B, VITU S, CLAUSE M, et al.Effect of lifter shape and operating parameters on the flow of materials in a pilot rotary kiln: Part III.Up-scaling considerations and segregation analysis[J].Powder Technology, 2016, 297: 415-428.
[57]NIENG A S B, VITU S, CLAUSE M, et al.Effect of lifter shape and operating parameters on the flow of materials in a pilot rotary kiln: Part II.Experimental hold-up and mean residence time modeling[J].Powder Technology, 2015, 269: 566-576.
[58]HELLOU M, LOMINE F, BENHSINE I, et al.Theoretical description of the motion of a particle in rotary dryer[J].The Canadian Journal of Chemical Engineering, 2019, 97(1): 103-114.
[59]GU C, LI P, Yuan Z, et al.A new corrected formula to predict mean residence time of flexible filamentous particles in rotary dryers[J].Powder Technology, 2016, 303: 168-175.
[60]PAREDES I J, YOHANNES B, EMADY H N, et al.The effect of operating conditions on the residence time distribution and axial dispersion coefficient of a cohesive powder in a rotary kiln[J].Chemical Engineering Science, 2017, 158: 50-57.
[61]PAREDES I J, YOHANNES B, EMADY H N, et al.Measurement of the residence time distribution of a cohesive powder in a flighted rotary kiln[J].Chemical Engineering Science, 2018, 191: 56-66.