ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第2期
<返回第2期

掺杂石墨烯粉末的静电纺纳米纤维薄膜的制备

Preparation of electrospun nanofiber films doped with graphene powder

童乾峰,刘清海,彭文联,代晓东

(军事科学院 防化研究院,北京 102205)


DOI:10.13732/j.issn.1008-5548.2023.02.015

收稿日期:2022-12-11,修回日期:2022-12-19,在线出版时间:2023-01-06 11:06。

基金项目:国防预研基金项目,编号30110020502,JK20211A040541。

第一作者简介:童乾峰(1999—),女,硕士研究生,研究方向为纳米纤维复合薄膜技术。E-mail:1073148815@qq.com。

通信作者简介:代晓东(1974—),男,研究员,博士,博士生导师,研究方向为军用功能材料技术。E-mail:dxd010@163.com。


摘要:基于单喷射静电纺丝法建立掺杂石墨烯粉末的聚丙烯腈(PAN)纳米纤维复合薄膜的制备方法,研究石墨烯粉末的种类、掺杂量等因素对复合薄膜微观结构的影响。结果表明:石墨烯粉末片径越小、片层数量越少、掺杂量越高,越有利于减小纳米纤维的平均直径;通过优化纺丝前驱体溶液的制备工艺,可降低石墨烯片粒径,将石墨烯的掺杂质量分数提升至7%,制备的复合薄膜的纳米纤维直径也会减少,相对于未添加石墨烯的薄膜,减小幅度达到34.0%。该制备方法利于得到纤维直径更小的PAN薄膜,降低薄膜的孔径,提高薄膜的力学性能,提升对超细颗粒物的过滤效果。

关键词:石墨烯; 聚丙烯腈; 静电纺丝; 纳米纤维; 复合薄膜

Abstract:Based on the single-jet electrospinning method, the preparation method of polyacrylonitrile(PAN)nanofiber composite films doped with graphene powder was established.The effects of the type and doping content of graphene powder on the microstructure of the composite films were studied.The results show that with the graphene powder sheet diameter becoming smaller, the number of sheets becoming less and the doping content becoming higher, it is the more conducive to reducing the average diameter of nanofibers.In addition, by optimizing the preparation process of spinning precursor solution, the sheet diameter of graphene is reduced, and the doping content of graphene further increase to 7%.The diameter of nanofibers in the prepared composite film also further reduce, which is 34.0% less than that of the film without graphene.The established preparation method is conducive to obtaining PAN film with smaller fiber diameter, reducing the pore diameter of the film, improving the mechanical properties of the film, and improving its filtering effect on ultrafine particles.

Keywords:graphene; polyacrylonitrile; electrospinning; nanofibers; composite films


参考文献(References):

[1]侯从聪.静电纺丝制备碳纳米管/聚合物复合纳米纤维的研究进展[J].机械工程与自动化, 2022(1): 212-219.

[2]陈明伊, 陈柔羲, 朱健, 等.静电纺丝技术工业化研究进展[J].高科技纤维与应用, 2020, 45(6): 53-64.

[3]LI T, SUN M, WU S.State-of-the-art review of electrospun gelatin-based nanofiber dressings for wound healing applications[J].Nanomaterials, 2022, 12(5): 784.

[4]DOU Y, ZHANG W J, KAISER A.Electrospinning of metal-organic frameworks for energy and environmental applications[J].Advanced Science, 2020, 7(3):1902590.

[5]CHEN S X, LI R Q, LI X R, et al.Electrospinning: an enabling nanotechnology platform for drug delivery and regenerative medicine[J].Advanced Drug Delivery Reviews, 2018, 132:188-213.

[6]颜琨, 王琛, 王亮, 等.静电纺PAN/SiO2纳米纤维膜的制备及其过滤性能[J].西安工程大学学报, 2020, 34(1):8.

[7]郭岭岭, 林洪芹, 陆振乾, 等.静电纺PAN/竹炭粉纳米纤维膜及其过滤性能[J].国际纺织导报, 2019, 47(8): 4.

[8]TANG Z, SHEN S, ZHUANG J, et al.Noble metal promoted three dimensional macroassembly of single layered graphene oxide[J].Angewandte Chemie-International Edition, 2010, 49(27): 4603-4607.

[9]ABDEL-MOTTALEB M M, MOHAMED A, KARIM S A, et al.Preparation, characterization, and mechanical properties of polyacrylonitrile(PAN)/graphene oxide(GO)nanofibers[J].Mechanics of Composite Materials & Structures, 2020, 27(4):346-351.

[10]LU Y, ZHANG W, WANG M, et al.Fabrication of GO/PAN nanofiber membrane grafted with chitosan as efficient adsorbent for dye removal[J].Journal of Polymers and the Environment, 2022, 30(7): 2943-2954.

[11]LI J, ZHANG D Z, JIANG X, et al.Nest-like multilevel structured graphene oxide-on-polyacrylonitrile membranes for highly efficient filtra tion of ultrafine particles[J].Journal of Materiomics, 2019(3): 422-427.

[12]刘杰, 王莹, 马赛, 等.静电纺聚丙烯腈纳米纤维晶态结构及取向的形成[J].高分子学报, 2012(12): 1389-1398.

[13]孙亮, 王珺, 韩平畴.基于AFM的PCL纳米纤维动力学实验和尺寸效应研究[J].工程力学, 2009, 26(8): 228-232.

[14]SHIM I B, KOUH T.Effects of electrospinning nozzle size and voltage on polyvinylpyrrolidone fiber structure formation[J].New Physics Sae Mulli, 2020, 70(6): 531-534.

[15]CAI J Z, CUO-LEBANC C, NARAGHI M.Nanomechanical tests on continuous near-field electrospun PAN nanofibers reveal abnormal mechanical and morphology size effects[J].Polymer, 2021, 237: 124341.

[16]STÉPHANE, CUENOT, CHRISTIAN, et al.Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy[J].Physical Review B, 2004, 69(16): 55-59.

[17]孙亮.一维纳米结构力学性能尺寸效应的实验及理论研究[D].上海:复旦大学, 2008.

[18]吴薇, 陈思, 郭虹.空气过滤用静电纺PAN纳米纤维膜的制备及性能研究[J].国际纺织导报, 2019, 47(5): 8.

[19]蒙冉菊, 王铁军, 翁浦莹, 等.静电纺丝工艺参数对SS/PEO纳米纤维形貌及直径的影响[J].丝绸, 2018, 55(12): 37-42.

[20]IKUO U, KENYA U, YASUTADA N, et al.Direct observation and quantitative analysis of the fiber formation process during electrospinning by a high-speed camera[J].Industrial & Engineering Chemistry Research, 2018, 57: 12122-12126.

[21]CHEN S, LI R, LI X, et al.Electrospinning: an enabling nanotechnology platform for drug delivery and regenerative medicine[J].Advanced Drug Delivery Reviews, 2018, 132: 188-213.

[22]CHEN P, ZHOU Q, WANG J, et al.Effect of magnetic lens on the electrospinning whipping instability, fiber diameter and its distribution[J].Textile Research Journal, 2022, 92(9/10): 1631-1642.

[23]ZHOU Q, BAO M, YUAN H, et al.Implication of stable jet length in electrospinning for collecting well-aligned ultrafine PLLA fibers[J].Polymer, 2013(54): 6867-6876.

[24]MOON S, JONES M S, SEO E, et al.3D jet writing of mechanically actuated tandem scaffolds[J].Science Advances, 2021, 7(16): 1-8.