刘丹丹1,朱鸿飞1,李德文2
(1. 黑龙江科技大学 电气与控制工程学院,黑龙江 哈尔滨 150022;2. 中煤科工集团重庆研究院有限公司,重庆 400037)
DOI:10.13732/j.issn.1008-5548.2023.02.013
收稿日期:2022-08-31,修回日期:2022-10-17,在线出版时间:2023-01-04 10:50。
基金项目:国家重点研发计划项目,编号:2017YFC0805208。
第一作者简介:刘丹丹(1978—),女,教授,博士,硕士生导师,研究方向为矿山安全监测与电气设备控制。E-mail:liudandan2003@163.com。
通信作者简介:朱鸿飞(1998—),男,硕士研究生,研究方向为电气设备状态监测与矿山安全监控。E-mail:1216358329@qq.com。
摘要:为了提高现有虚拟冲击技术下的呼吸性粉尘采样分离器的分离标准差,采用壁面射流中的附壁效应,结合模型角度改变对颗粒捕获效率的影响,在凸型内壁的分离腔基础上,研究加速喷嘴尾部的角度、外壁面顶点的角度和喷嘴至收集腔的距离3个方面因素对于模型分离效率的影响。采用有限元软件ANSYS Fluent的气固两相流数值仿真,仿真模拟分离器的内部流场,在仿真过程中对颗粒进行捕捉跟踪,将计算出的分离效率与BMRC曲线的标准进行比较。结果表明:与凸型内壁结构的采样分离器模型相比,改进后的呼吸性粉尘采样分离器在粒径较小处的分离效率方程更贴近BMRC曲线,分离偏差均小于1.6%,分离标准差达到了δ2=2.31%,在参考模型的分离标准差上提高了12.83%。
关键词:虚拟冲击技术;壁面射流;气固两相流;数值模型曲线;呼吸性粉尘
Abstract:In order to improve the separation standard deviation of the respiratory dust sampling separator under the existing virtual impact technology, the wall effect in the wall jet was adopted, and the influence of the changed model angle on the particle capture efficiency was combined.On the basis of the separation cavity of the convex inner wall, the angle of the accelerated nozzle tail, the angle of the vertex of the outer wall, and the distance from nozzle to collect cavity were studied on the effect of model separation.Through the gas-solid two-phase flow mode of the finite element software ANSYS Fluent, the flow field inside the separator was simulated.The particles were captured and tracked during the simulation, and the resulting separation efficiency was compared to the standard of the BMRC curve.The results show that compared with the separator model with convex inner wall structure, the separation efficiency of the improved respiratory dust sampling separator at the smaller particle size is closed to the BMRC curve, the separation deviation is limited to less than 1.6%, and the separation standard deviation is proved to be 12.83% higher than that of the reference model, reaching δ2=2.31%.
Keywords:virtual impact technology;wall jets; gas-solid two phase flow; numerical simulation curve; respiratory dust
参考文献(References):
[1]中华人民共和国国务院新闻办公室.卫健委举行“一切为了人民健康—我们这十年”发布会[EB/OL].(2022-04-25)[2022-06-05].www.scio.gov.cn/xwfbh/gbwxwfbh/xwfbh/wsb/Document/1723771/1723771.htm.
[2]WANG P, YUAN S Q, OPPONG P K, et al.A sheathed virtual impactor-microseparator for improved separation of sub and supercritical sized particles[J].Journal of Aerosol Science, 2022, 164: 105999.
[3]TOMOAKI O, DAIKI S, YOSHIHIRO T, et al.Development of a high-volume simultaneous sampler for fine and coarse particles using virtual impactor and cyclone techniques[J].Asian Journal of Atmospheric Environment, 2018, 12(1): 78-86.
[4]HEO J E, MUHAMMAD Z, PARK D, et al.Effect of horizontal inlet on slit-nozzle virtual impactor performance[J].Journal of Mechanical Science and Technology, 2018, 32(5): 2419-2424.
[5]CHANG P K, HSIAO T C, GUENTER E, et al.Computational fluid dynamics study of the effects of flow and geometry parameters on a linear-slit virtual impactor for sampling and concentrating aerosols[J].Journal of Aerosol Science, 2019, 131: 28-40.
[6]LIM J H, PARK D, YOOK S J.Development of a multi-slit virtual impactor as a high-volume bio-aerosol sampler[J].Separation and Purification Technology, 2020, 250: 117275.
[7]蒋靖坤, 邓建国, 段雷, 等.基于虚拟撞击原理的固定源PM10/PM2.5采样器的研制[J].环境科学, 2014, 35(10): 3639-3643.
[8]MUHAMMAD Z, HEO J E, YOOK S J.Influence of clean air and inlet configuration on the performance of slit nozzle virtual impactor[J].Advanced Powder Technology, 2019, 30(12): 3224-3230.
[9]陈思敏, 孙士荣, 刘振峰, 等.轴流式旋风分离器结构与分离特性数值模拟[J].热能动力工程, 2021, 36(11): 100-106.
[10]马弢, 杨屹, 商洁, 等.某型虚拟冲击器的设计及数值模拟[J].辐射防护, 2021, 41(4): 359-364.
[11]谢双.基于虚拟冲击原理的呼吸性粉尘分离技术和分离器研究[D].重庆:重庆科技学院, 2019.
[12]刘丹丹, 黄鹏升, 李德文, 等.基于凸形壁面的虚拟冲击式呼吸性粉尘采样器研究[J].中国安全生产科学技术, 2022, 18(2): 220-224.
[13]蒋靖坤, 邓建国, 李振, 等.双级虚拟撞击采样器应用于固定污染源PM10和PM2.5排放测量[J].环境科学, 2016, 37(6): 2003-2007.
[14]王佳硕, 齐艺裴, 周子健, 等.基于5种风筒出风角度的粉尘分布[J].煤炭技术, 2021, 40(9): 99-101.
[15]任玲, 袁娜, 林龙沅.多孔喷吹气流偏斜对滤筒清灰性能的影响[J].中国粉体技术, 2021, 27(1): 58-64.
[16]CHEN J H, WILLIAM C, TRACEY A, et al.Effect of angle of attack on the performance of an airborne counterflow virtual impactor[J].Aerosol Science and Technology, 2006, 39(6): 485-491.
[17]周友行, 李昱泽, 徐长锋, 等.海泡石颗粒气固两相射流分级的数值模拟[J].中国粉体技术, 2020, 26(4): 15-20.
[18]SHI C S, LUO D J, ZHU X H.Working characteristics of coiled tubing mechanical friction reducing tool based on coanda effect[J].Journal of Petroleum Science and Engineering, 2022, 212: 110223.
[19]CHUKWUNEKE J, ANIEMENE C, OKOLIE P, et al.Analysis of the dynamics of a freely falling body in a viscous fluid: computational fluid dynamics approach[J].International Journal of Thermofluids, 2022, 14: 100157.
[20]WANG C, ZHANG Y L.Performance enhancement for a dual-chamber owc conceived from side wall effects in narrow flumes[J].Ocean Engineering, 2022, 247: 110552.
[21]BILLY W, CHRISTOPHER P.Development of high efficiency virtual impactors[J].Aerosol Science and Technology, 1988, 9(3): 167-176.