王双飞1,柯国军1,彭 勃2,李 军2,邱浩群2
(1. 南华大学 土木工程学院; 中国核建高性能混凝土实验室,湖南 衡阳 421001;2. 湖南固特邦土木技术发展有限公司,湖南 长沙 410205)
DOI:10.13732/j.issn.1008-5548.2023.02.016
收稿日期:2022-09-25,修回日期:2022-10-21,在线出版时间:2023-03-02 09:25。
基金项目:湖南省自然科学基金衡阳联合项目,编号:2019JJ60003。
第一作者简介:王双飞(1998—),男,硕士研究生,研究方向为高性能与超高性能混凝土及固体废渣利用。E-mail:1542683896@qq.com。
通信作者简介:柯国军(1964—),男,教授,硕士,硕士生导师,研究方向为高性能与超高性能混凝土及固体废渣利用。E-mail:1132980799@qq.com。
摘要:利用紧密堆积理论设计胶凝材料和细骨料的配合比,研究不同水胶比(0.135~0.165,质量分数,下同)对超高性能混凝土(ultra-high performance concrete, UHPC)施工性能、抗压强度的影响;对不同水胶比的UHPC拌合物进行含气量(体积分数,下同)测试;并利用低场磁共振分析和扫描电镜分析,研究UHPC试件的孔结构和微观形貌。结果表明:随着水胶比的增大,UHPC拌合物的扩展度增大并呈现线性关系;UHPC的抗压强度随着水胶比的增大呈现先增大后减小的趋势,在水胶比为0.15时抗压强度达到最大;水胶比为0.15时含气量最小,并且抗压强度与含气量之间存在良好的线性关系;水胶比为0.15时的孔结构最优,基体最密实。
关键词:超高性能混凝土;水胶比;抗压强度;扩展度;孔结构;含气量
Abstract:By using of design of the mix proportion of the cementitious materials and fine aggregate based on close packing theory, the influence of different water-binder ratio(0.135~0.165, mass fraction) on the workability and compressive strength of ultra-high performance concrete(UHPC) were studied. The air content(volume fraction) of UHPC mixture with different water binder ratio were tested. The pore structure and micro morphology of UHPC specimens were studied by low field magnetic resonance analysis and scanning electron microscopy. The results show that with the increasing of water-binder ratio, the expansion of UHPC mixture increases and presentes a linear relationship. The compressive strength of UHPC increases first and then decreases with the increasing of water-binder ratio, and reaches the maximum when the water-binder ratio is 0.15. When the water-binder ratio is 0.15, the air content is the minimum, and there is a good linear relationship between the compressive strength and the air content. When the water binder ratio is 0.15, the pore structure is the best and the matrix is the densest.
Keywords:ultra-high performance concrete; water-binder ratio; compressive strength; expansibility; pore structure; air content
参考文献(References):
[1]王俊颜, 耿莉萍, 郭君渊, 等.UHPC的轴拉性能与裂缝宽度控制能力研究[J].哈尔滨工业大学学报, 2017, 49(12): 165-169.
[2]邵旭东, 吴佳佳, 刘榕, 等.钢-UHPC轻型组合桥梁结构华夫桥面板的基本性能[J].中国公路学报, 2017, 30(3): 218-225, 245.
[3]YU R, SPIESZ P, BROUWERS H J H.Mix design and properties assessment of ultra-high performance fibre reinforced concrete(UHPFRC)[J].Cement and Concrete Research, 2014, 56(2): 29.
[4]余睿, 范定强, 水中和, 等.基于颗粒最紧密堆积理论的超高性能混凝土配合比设计[J].硅酸盐学报, 2020, 48(8): 1145-1154.
[5]BROUWERS H J H.The work of powers and brownyard revisited: part 1[J].Cement and Concrete Research, 2004, 34: 1697-1716.
[6]HANI N, NAWAWY O, RAGAB K S, et al.The effect of different water/binder ratio and nano-silica dosage on the fresh and hardened properties of self-compacting concrete[J].Construction and Building Materials, 2018, 165: 504-513.
[7]袁明,贺文杰, 颜东煌, 等.超高性能混凝土配合比优化研究[J].中外公路, 2019, 39(6): 169-172.
[8]贺文杰.超高性能混凝土制备方法与材料性能研究[D].长沙: 长沙理工大学, 2019.
[9]沈锐, 李云军.超高性能混凝土工作性改善措施研究[J].重庆建筑, 2020, 19(1): 37-39.
[10]AÏTCIN P C.The importance of the water-cement and water-binder ratios[J].Science and Technology of Concrete Admixtures, 2015, 42(4): 164-174.
[11]WILLE K,NAAMAN A E,PARRA-MONTESINOS G J.Ultra-high performance concrete with compressive strength exceeding 150 MPa(22ksi): a simple way[J].ACI Mater J, 2011, 108(1): 46-54.
[12]欧阳雪, 史才军, 史金华, 等.超高性能混凝土受压力学性能及其弹性模量预测[J].硅酸盐学报, 2021, 49(2): 296-304.
[13]赵金侠, 黄亮, 谢建和.不同配比和养护条件对超高性能混凝土微观结构的影响[J].中国公路学报, 2019, 32(7): 111-119.
[14]卢喆, 冯振刚, 姚冬冬, 等.超高性能混凝土工作性与强度影响因素分析[J].材料导报, 2020, 34(S1): 203-208.
[15]李传习, 聂洁, 潘仁胜, 等.水胶比对超高性能混凝土施工与力学性能的影响[J].土木与环境工程学报(中英文), 2020, 42(4): 164-174.
[16]李传习, 聂洁, 潘仁胜, 等.水胶比对掺粉煤灰超高性能混凝土施工与力学性能的影响[J].硅酸盐通报, 2019, 38(1): 14-21.
[17]樊俊江, 於林锋, 韩建军.配比参数对UHPC流动性及抗压强度的影响试验研究[J].新型建筑材料, 2019, 46(4): 5-8.
[18]WANG C, YANG C H, LIU F, et al.Preparation of ultra-high performance concrete with common technology and materials[J].Cement&Concrete Composites, 2012, 34(4): 538-544.
[19]中国工程建设标准化协会.超高性能混凝土实验方法标准: T/CECS 864—2021[S].北京: 中国建筑工业出版社, 2021.
[20]何峰, 黄政宇.活性粉末混凝土原材料及配合比设计参数的选择[J].新型建筑材料, 2007(3): 74-77.
[21]高小建, 黄煌煌, 贾迪.消泡剂对超高性能混凝土气泡参数与强度的影响[J].水利科学与寒区工程, 2018, 1(12): 8-12.
[22]吴中伟, 廉慧珍.高性能混凝土[M].中国铁道出版社, 1999: 22-25.