ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第2期
<返回第2期

基于颗粒缩放理论的生石灰粉离散元参数标定

Discrete element parameter calibration of quicklime powder based on particle scaling theory

邹 洋, 汤 佟,高自成,乔志东,胡意波

(中南林业科技大学 机电工程学院,湖南 长沙 410004)


DOI:10.13732/j.issn.1008-5548.2023.02.010

收稿日期:2022-07-27,修回日期:2022-09-30,在线出版时间:2023-01-11 11:28。

基金项目:湖南省重点领域研发计划项目,编号:2019NK2022;湖南省重点研发计划项目,编号:2018NK2065。

第一作者简介:邹洋(1998—),男,硕士研究生,研究方向为现代林业设备。E-mail:1185628882@qq.com。

通信作者简介:高自成(1968—),男,教授,博士,硕士生导师,研究方向为现代林业设备。E-mail:gzc1968@126.com。


摘要:为获得生石灰粉离散元仿真的接触参数,结合物理试验与仿真试验对生石灰粉进行参数标定;将形状不规则生石灰颗粒简化为软质球形颗粒,运用颗粒缩放理论将平均粒径放大至2mm,便于利用离散元仿真软件EDEM进行接触参数的虚拟标定;通过Plackett-Burman试验、最陡爬坡试验和Box-Behnken试验获得3个显著性参数,即生石灰-生石灰滚动摩擦系数、生石灰-钢恢复系数、 JKR(Johnson Kendall Roberts)表面能;建立显著性参数与休止角的数学回归模型,再以预测休止角与实际休止角相对误差最小为目标,寻优求解该数学回归模型。结果表明:物理属性测试得到生石灰粉基本物理参数,即堆密度为1.127 g/cm3,平均粒径为0.126 mm,休止角为48.76°;回归模型得到最优参数组合,生石灰-生石灰滚动摩擦系数为0.165、生石灰-钢恢复系数为0.215、 JKR表面能为0.113 J/m2;最优参数组合仿真得到的休止角为48.39°,与实际休止角相对误差为0.76%,仿真试验结果与物理试验结果高度一致。

关键词:生石灰粉;堆密度;休止角;颗粒缩放;参数标定

Abstract:In order to obtain the contact parameters of the discrete element simulation of the quicklime powder, the parameters of the quicklime powder were calibrated by combining the physical test and the simulation test. The irregularly shaped quicklime particles were simplified into soft spherical particles, and the average particle size was enlarged to 2 mm by particle scaling theory, which was convenient for virtual calibration of contact parameters by using discrete element simulation software EDEM. Three significant parameters were obtained by Plackett-Burman test, steepest climb test and Box-Behnken test, namely, rolling friction coefficient of lime and lime, recovery coefficient of lime and steel, and JKR(Johnson Kendall Roberts) surface energy. A mathematical regression model of significance parameter and angle of repose was established, and then the relative error between prediction angle of repose and actual angle of repose was taken as the goal to optimize the mathematical regression model. The results show that the physical properties test is a basic physical parameter quick lime powder and the bulk density of 1.127 g/cm3, the average particle size of 0.126 mm, angle of repose is 48.76°. The optimal parameter combination is obtained by regression model, the rolling friction coefficient of lime and lime is 0.165, the recovery coefficient of lime and steel is 0.215, and the surface energy of JKR is 0.113 J/m2. The angle of rest obtained by the optimal parameter combination simulation is 48.39°, and the relative error between the angle of rest and the actual angle of rest is 0.76%. The simulation test results are highly consistent with the physical test results.

Keywords:quicklime powder; bulk density; angle of repose; particle scaling; calibration of parameters


参考文献(References):

[1]周建斌,陶静静,赵梦真,等.农业生产对石灰性土壤无机碳库损失的影响[J].土壤学报,2022,59(3): 593-602.

[2]高自成,李立君,阳涵疆,等.正反螺旋式土壤改良石灰撒施机设计与试验[J].农业工程学报,2015,31(10): 43-50.

[3]曾智伟,马旭,曹秀龙,等.离散元法在农业工程研究中的应用现状和展望[J].农业机械学报,2021,52(4): 1-20.

[4]周龙海.垂直螺旋输送的EDEM仿真与实验研究[D].杭州: 浙江工业大学,2017.

[5]SAKAI M,KOSHIZUKA S.Large-scale discrete element modeling in pneumatic conveying[J].Chemical Engineering Science,2009,64(3): 533-539.

[6]THAKUR S C,OOI J Y,AHMADIAN H.Scaling of discrete element model parameters for cohesionless and cohesive solid[J].Powder Technology,2016,293: 130-137.

[7]李永祥,李飞翔,徐雪萌,等.基于颗粒缩放的小麦粉离散元参数标定[J].农业工程学报,2019,35(16): 320-327.

[8]任建莉,周龙海,韩龙,等.基于颗粒缩放理论的垂直螺旋输送离散模拟[J].过程工程学报,2017,17(5): 936-943.

[9]曹林.旋耕机石灰撒施装置的设计与试验研究[D].长沙: 湖南农业大学,2016.

[10]FENG Y T,HAN K,OWEN D R J,et al.On upscaling of discrete element models: similarity principles[J].Engineering Computations: Int J for Computer-Aided Engineering,2009,26(6): 599-609.

[11]李郁,崔可源.基于量纲分析方法的水平螺旋输送机离散元仿真研究[J].起重运输机械,2021(17): 36-40,46.

[12]FENG Y T,OWEN D R J.Discrete element modelling of large scale particle systems-I: exact scaling laws[J].Computational Particle Mechanics,2014,1(2): 159-168.

[13]JOHNSON K L,KENDALL K,ROBERTS A D.Surface energy and the contact of elastic solids[J].Proceedings of the Royal Society of London:Series A,Mathematical and Physical Sciences,1971,324(1558): 301-313.

[14]YANG F,DU Y,FU Q,et al.Design and testing of seed maize ear peeling roller based on Hertz theory[J].Biosystems Engineering,2021,202(7): 165-178.

[15]宋占华,李浩,闫银发,等.桑园土壤非等径颗粒离散元仿真模型参数标定与试验[J].农业机械学报,2022,53(6): 21-33.

[16]罗帅,袁巧霞,GOUDA Shaban,等.基于JKR粘结模型的蚯蚓粪基质离散元法参数标定[J].农业机械学报,2018,49(4): 343-350.

[17]王志鹏,李永祥,徐雪萌.基于堆积实验的小米离散元参数标定[J].中国粮油学报,2021,36(2): 115-120.

[18]韩伟,王绍宗,张倩,等.基于JKR接触模型的微米级颗粒离散元参数标定[J].中国粉体技术,2021,27(6): 60-69.

[19]王黎明,范盛远,程红胜,等.基于EDEM的猪粪接触参数标定[J].农业工程学报,2020,36(15): 95-102.

[20]MARIGO M,STITT E H.Discrete element method(DEM)for industrial applications: comments on calibration and validation for the modelling of cylindrical pellets[J].KONA Powder and Particle Journal,2015,32: 236-252.