ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第2期
<返回第2期

Si含量对油茶果壳基SiC陶瓷的结构及性能影响

Effect of Si content on microstructure and properties of camellia oleifera shell-based SiC ceramics

张立强1,林诗力1,陈招科2,周 峰1

(1. 中南林业科技大学 机电工程学院,湖南 长沙 410004;2. 中南大学 粉末冶金国家重点实验室,湖南 长沙 410083)


DOI:10.13732/j.issn.1008-5548.2023.02.008

收稿日期:2022-09-14,修回日期:2022-10-25,在线出版时间:2023-01-31 16:18。

基金项目:长沙市自然科学基金项目,编号:kq2202288。

第一作者简介:张立强(1978—),男,教授,博士,硕士生导师,研究方向为材料的成型与应用。E-mail: 21384881@qq.com。

通信作者简介:陈招科(1979—),男,研究员,博士,博士生导师,研究方向为超高温陶瓷基复合材料。E-mail: 18390625464@163.com。


摘要:以油茶果壳、硅粉和酚醛树脂为原料,经热压成型、高温原位反应烧结工艺制备油茶果壳基SiC陶瓷。采用热重-示差扫描量热(thermogravimetric-differential scanning calorimetry, TG-DSC)分析研究油茶果壳粉和酚醛树脂的裂解行为;通过X射线衍射仪、扫描电子显微镜、三点弯曲法和阿基米德排水法表征SiC陶瓷物相组成和微观组织,分析SiC陶瓷的抗压强度和孔隙率,基于表征分析结果探讨Si含量对油茶果壳基SiC陶瓷物相组成、微观结构、抗压强度和孔隙率的影响。结果表明:油茶果壳基SiC陶瓷由主晶相β-SiC和游离的Si组成,孔隙结构发达,孔洞呈蜂窝状,大小均匀,孔隙率高(>50%),抗压强度良好(12~18 MPa),随Si含量的增加,孔隙率与抗压强度先增大后减小。

关键词:碳化硅陶瓷;油茶果壳;抗压强度;孔隙率;微观结构

Abstract:Camellia oleifera shell, silica powder and phenolic resin were adopted as raw materials to prepare camellia oleifera shell-based SiC ceramics by hot-press forming and high temperature in-situ reaction sintering process. Thermogravimetric-differential scanning calorimetry(TG-DSC) analysis was applied to study the cracking behavior of camellia oil shell powder and phenolic resin. X-ray diffractometer, scanning electron microscope three-point bending method and Archimedes drainage method were used to characterize phase composition and microstructure of the SiC ceramics, and analyse compressive strength and porosity of the SiC ceramics, based on the above results to study the effect of Si content on phase composition, microstructure, compressive strength and porosity of SiC ceramics. Experimental results show that the camellia oleifera shell-based SiC ceramics are composed of the main crystalline phase β-SiC and free Si and have a well pore structure where the pore is honeycomb and uniform in size. The camellia oleifera shell-based SiC ceramics have high porosity(>50%) and good compressive strength(12~18 MPa). With the increasing of Si content, the porosity and the compressive strength of the camellia oleifera shell-based SiC ceramics increase first and then decrease. These results indicates that the camellia oleifera shell-based SiC ceramics has a promising development in the fields of hot gas filtration.

Keywords:SiC ceramics; camellia oleifera shell; compressive strength; porosity; microstructure


参考文献(References):

[1]李辰冉,谢志鹏,康国兴,等.国内外碳化硅陶瓷材料研究与应用进展[J].硅酸盐通报,2020,39(5):1353-1370.

[2]伍孝.高纯合成系中间相沥青的制备与性能研究[D].长沙:湖南大学,2019.

[3]LIU J J,REN B,RONG Y D,et al.Ultralight and mechanically robust SiC foams with interconnected cellular architecture[J].Ceram,2020,46(11):17962-17968.

[4]BAITALIK S,KAYAL N.Thermal shock and chemical corrosion resistance of oxide bonded porous SiC ceramics prepared by infiltration technique[J].Alloys Compd,2019,781:289-301.

[5]S SCHAAFHAUSEN,E YAZHENSKIKH,S HEIDENREICH,et al.Corrosion of silicon carbide hot gas filter candles in gasification environment[J].Ceram,2014,34(3):575-588.

[6]EOM Y,HYUCKSONG IN.Effects of the initial α-SiC content on the microstructure,mechanical properties,and permeability of macroporous silicon carbide ceramics[J].Ceram,2012,32(6):1283-1290.

[7]YUAN B L,WANG H X,G YU,et al.Preparation and properties of porous silicon carbide based ceramic filter[J].Alloys Compd,2016,684:613-615.

[8]WANG H,WANG Z F,WU L N,et al.Porous silicon carbide as a support for Mn/Na/W/SiC catalyst in the oxidative coupling of methane[J].Applied Catalysis A:General,2017,537:33-39.

[9]LIANG C Y,E YAZHENSKIKH,S HEIDENREICH,et al.Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures[J].ACS Applied Materials & Interface,2017,9(35):29950-29957.

[10]CHIEW Y L,CHEONG K Y.A review on the synthesis of SiC from plant-based biomasses[J].Materials Science and Engineering:B,2011,176(13):951-964.

[11]张建,陈志林,周建斌,等.生物质结构SiC陶瓷材料的研究现状及发展趋[J].木材工业,2009,23(2):31-33.

[12]崔贺帅,郑彧,刘杏娥,等.生物质基SiC陶瓷制备的研究进展[J].材料工程,2017,45(8):115-122.

[13]ZOLLFRANK C,SIEBER H.Microstrucyure and phase morphology of wood derived biomorphous Si/SiC-ceramics[J].Journal of the European Ceramic Society,2004,24(2):495-506.

[14]DODEVSKI V C,PAGNACCO M,RADOVIC I,et al.Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization[J].Materials Chemistry and Physics: B,2020,122768:254-584.

[15]刘东,余雁,张求惠,等.竹炭为模板高温制备SiC纳微米棒[J].新型炭材料,2011,26(6):435-440.

[16]傅长根,周鹏.植物油领域的新军——茶油[J].江西食品工业,2003,2:19-21.

[17]贺桂先,李林松,徐林初,等.油茶的生长特性及其功能价值[J].江西林业科技,2007,4:39-42.

[18]李文林,黄凤洪,王利宾.油茶籽加工和综合利用研究进展[J].中国油脂,2011,36(11):55-57.

[19]LIU J,QIAO Y L,ZHANG P,et al.Synthesis of SiC ceramics from polysilazane by laser pyrolysis[J].Surface and Coatings Technology,2017,321:491-495.

[20]王萍,程晓农,严学华,等.木粉/环氧树脂木材陶瓷的制备与研究[J].硅酸盐通报,2008(1):34-37,54.

[21]钱军民,王继平,金志浩.木材陶瓷和Si粉原位反应烧结制备多孔SiC的研究[J].硅酸盐学报,2003(7):635-640.

[22]周峰,程晓农,严学华,等.原位反应烧结法制备SiC多孔木材陶瓷[J].材料科学与工程学报,2008(5):757-760.

[23]徐多,阙荣君,唐梦雪,等.淀粉造孔剂碳化硅木陶瓷微观结构及性能影响[J].林业工程报,2019,4(5):107-114.