张彩利,王 犇,李天豪,王亦飞,李宁利
(河北工业大学 土木与交通学院; 天津市交通工程绿色材料技术工程中心,天津 300401)
DOI:10.13732/j.issn.1008-5548.2023.02.007
收稿日期:2022-09-26,修回日期:2022-11-05,在线出版时间:2023-01-10 16:53。
基金项目:长安大学重点科研平台开放基金项目,编号:300102210510。
第一作者简介:张彩利(1978—),女,副教授,博士,硕士生导师,研究方向为路面工程材料。E-mail: zhangcailimeng@163.com。
通信作者简介:王犇(1995—),男,硕士研究生,研究方向为路面工程材料。E-mail: wb17602210485@163.com。
摘要:为解决钢渣微粉在水泥基复合材料中掺配比例较低的问题,采用力学性能测试、 XRD、 SEM、 FTIR等方法研究激发剂种类、掺量等对钢渣微粉-水泥胶凝材料力学强度和微观结构的影响。结果表明:碱性激发剂可提高钢渣微粉水化速度、增大复合胶凝材料抗压强度,但激发剂种类对胶凝材料激发效果具有差异性;碳酸钠与三乙醇胺复合激发后效果显著,3、 7、 28 d龄期的最佳强度与未掺加激发剂实验组的相比分别提高47%、 72%、 69%;激发剂对复合胶凝材料浆体水化产物种类没有影响;三乙醇胺具有悬浮稳定效应以及降低溶液表面张力的能力,与碳酸钠的强腐蚀效应作用在钢渣微粉水泥体系中协同强化水化反应,使复合胶凝体系中生成更多的水化产物并且相互交织成复杂密实的空间结构。
关键词:钢渣微粉;复合激发剂;抗压强度;水化机理;微观特性
Abstract:In order to solve the problem of low-proportion steel slag powder in cement-based composite materials, the impact of activate type, dosage on mechanical properties and microstructure of steel slag powder-cement cementitious materials were studied by mechanical properties test, XRD, SEM, FTIR, etc. The results show that alkali-activator can improve the hydration speed of steel slag powder and increase the compressive strength of the composite cementitious material, but different activators exerts different excitation effects on the cementitious material. The compound activation effect of sodium carbonate and triethanolamine is remarkable. The optimal strength on 3, 7 and 28 d is increased by 47%, 72% and 69%, respectively, comparing with the experimental group without activator. The hydration product type of composite cementitious slurry is not affected by the activator. Triethanolamine has suspension stabilization effect and ability to reduce the surface tension of the solution. Combined with the strong corrosion effect of sodium carbonate, it synergistically strengthens the hydration reaction in the steel slag powder cement system, so that more hydration products are generated in the composite cementitious system and intertwined into a complex and dense spatial structure.
Keywords:steel slag powder; compound activator; compressive strength; hydration mechanism; microscopic characteristics
参考文献(References):
[1]彭小芹, 李三, 刘朝.碱激发钢渣-矿渣混凝土的性能研究[J].非金属矿, 2016, 39(3): 17-19,32.
[2]GUO J, BAO Y, WANG M.Steel slag in China: treatment, recycling, and management[J].Waste Management, 2018, 78: 318-330.
[3]吴跃东, 彭犇, 吴龙, 等.国内外钢渣处理与资源化利用技术发展现状综述[J].环境工程, 2021, 39(1): 161165.
[4]邹敏, 沈玉, 刘娟红.钢渣粉在水泥基材料中应用研究综述[J].硅酸盐通报, 2021, 40(9): 2964-2977.
[5]KOUROUNIS S, TSIVILIS S, TSAKIRIDIS P E, et al.Properties and hydration of blended cements with steelmaking slag[J].Cement and Concrete Research, 2007, 37(6): 815-822.
[6]SHI C J.Characteristics and cementitious properties of ladle slag fines from steel production[J].Cement Concrete Research, 2002, 32(3): 459-462.
[7]ZHOU H H, WU X Q, XU Z Z, et al.Kinetic study on hydration of alkali-activited slag[J].Cement and Concrete Research, 1993, 23(4): 991.
[8]王强.钢渣的胶凝性能及在复合胶凝材料水化硬化过程中的作用[D].北京:清华大学, 2010.
[9]董越, 杨志强, 高谦.钢渣取代量对复合充填胶凝材料性能的影响[J].硅酸盐通报, 2016, 35(9): 2967-2972, 2979.
[10]NATALI M A, RICKARD W D A, BIGNOZZI M C, et al.High temperature behavior of ambient cured alkali-activated materials based on ladle slag[J].Cement and Concrete Research, 2013, 43: 51-61.
[11]WANG Q, YAN P, HAN S.The influence of steel slag on the hydration of cement during the hydration process of complex binder[J].Science China Technological Sciences, 2011, 54(2): 388-394.
[12]王毓, 张长森, 吴发红, 等.不同激发剂对钢渣活性及水泥强度的影响[J].混凝土与水泥制品, 2018(4): 7-11.
[13]国家市场监督管理总局, 国家标准化管理委员会.水泥胶砂强度检验方法(ISO法): G/T 17671—2021[S].北京: 中国标准出版社, 2021.
[14]丁星, 蒲心诚.水泥活性矿物掺料增强效应统计模型研究[J].硅酸盐学报, 1999(4): 19-25.
[15]王旭, 黄小青, 陆金海.化学激发剂对铜渣及铜渣水泥激发作用的研究[J].广西科技大学学报, 2018, 29(1): 100-105.
[16]王梦琪, 王路明, 蔡树元, 等.无机激发剂对碱矿渣-钢渣胶凝材料抗压强度的影响[J].混凝土与水泥制品, 2020(7): 84-87.