ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第2期
<返回第2期

粉煤灰地聚物的抗压强度及微观结构

Compressive strength and microstructure of fly ash geopolymer

何 蓓1,张吾渝1,童国庆1,唐 鑫1,刘成奎2, 3

(1. 青海大学 土木工程学院; 青海省建筑节能材料与工程安全重点实验室, 青海 西宁 810016;2. 青海省建筑建材科学研究院有限责任公司, 青海 西宁 810008;3. 青海省高原绿色建筑与生态社区重点实验室, 青海 西宁 810008)


DOI:10.13732/j.issn.1008-5548.2023.02.005

收稿日期:2022-08-18,修回日期:2022-09-28,在线出版时间:2023-01-13 08:40。

基金项目:国家自然科学基金项目,编号:52168054;青海省高原绿色建筑与生态社区重点实验室开放基金项目,编号:KLKF-2021-007。

第一作者简介:何蓓(1996—),女,硕士研究生,研究方向为地基处理和碱激发胶凝材料。E-mail:1294480511@qq.com。

通信作者简介:张吾渝(1969—),女,教授,硕士,博士生导师,研究方向为岩土工程地基。E-mail:qdzwy@163.com。


摘要:通过无侧限抗压强度试验,探究水玻璃模数和水胶料配合比(水与粉煤灰质量比,简称水胶比)对粉煤灰地质聚合物宏观力学强度的影响,并结合扫描电镜、 X射线衍射等从微观角度解释内在机理。结果表明:水玻璃模数和水胶比均对粉煤灰地质聚合物力学特性产生重要影响。水玻璃模数为0.8、 1.1、 1.3和1.5时,粉煤灰地聚物试样的无侧限抗压强度先增大后减小,水玻璃模数为1.1时,试样的力学强度呈现出最优水平;在水胶比为0.28、 0.30、 0.32时,试样力学强度呈现递减的趋势。粉煤灰玻璃体在碱性环境中溶解,物质之间发生解聚-缩聚反应,N-A-S-H凝胶物质作为反应产物,起到填充孔隙的作用,在水玻璃模数为1.1、水胶比为0.28时,体系中的水化反应充分进行,较多的凝胶物质产生,结构的整体性提高效果最显著,表现在宏观上为试样力学强度最高。

关键词:粉煤灰地聚物;水玻璃模数;水胶比

Abstract:The effects of water glass modulus and water-binder ratio(the ratio of water to the mass of fly ash) on the macroscopic mechanical strength of fly ash geopolymer were investigated by unconfined compressive strength test. Scanning electron microscope and X-ray diffraction were used to explain the internal mechanism from a microscopic perspective. The results show that both the modulus of water glass and water-binder ratio have an important influence on the mechanical properties of fly ash geopolymer. When the water glass modulus is 0.8, 1.1, 1.3 and 1.5, respectively, the unconfined compressive strength of the fly ash geopolymer sample is increased first and then decrease. When the water glass modulus is 1.1, the mechanical strength is showed an optimal level. When the water-binder ratio is 0.28, 0.30, and 0.32, the mechanical strength of the sample is showed a decreasing trend. The fly ash glass body is dissolved in an alkaline environment, and the depolymerization-polycondensation reaction is occured between the substances. N-A-S-H gel substance is acted as the reaction product and played the role of filling the pores. When the number is 1.1 and the water-binder ratio is 0.28, the hydration reaction in the system is fully carried out, more gel substances are produced, and the structural integrity improvement effect is the most significant, and the macroscopic mechanical strength is the highest.

Keywords:fly ash geopolymer; water glass modulus; water-binder ratio


参考文献(References):

[1]DAVIDOVITS J.Geopolymers and geopolymeric materials[J].Journal of Thermal Analysis Calorimetry, 1989, 35(2): 429-441.

[2]DAVIDOVITS J.Geopolymer chemistry and application[M].Saint-Quentin: National Defense Press, 2008: 41-42.

[3]邓永锋, 吴子龙, 刘松玉, 等.地聚合物对水泥固化土强度的影响及其机理分析[J].岩土工程学报, 2016, 38(3): 68-75.

[4]崔靖俞, 纪曦, 季港澳, 等.湿陷性黄土地基粉煤灰-水泥复合注浆材料性能试验研究[J].硅酸盐通报, 2019, 38(9): 3020-3031.

[5]罗少慧.粉煤灰基矿物聚合材料的制备及其显微结构研究[D].淄博: 山东理工大学, 2013.

[6]刘润清, 孙斯慧, 杨元全.粉煤灰粒径分布对硅酸盐水泥水化性能的影响[J].中国粉体技术, 2017, 23(5): 83-86.

[7]王春雪, 刘泽, 孔凡龙, 等.钢渣-粉煤灰基地质聚合物的制备及性能研究[J].硅酸盐通报, 2015, 34(12): 3430-3435.

[8]童国庆, 张吾渝, 高义婷, 等.碱激发粉煤灰地聚物的力学性能及微观机制研究[J].材料导报, 2022, 36(4): 129-134.

[9]刘泽, 周瑜, 孔凡龙, 等.矿渣-粉煤灰基发泡地质聚合物的微观结构与性能研究[J].新型建筑材料, 2017, 44(12): 12-15.

[10]刘乐平, 贺艳, 何立平, 等.粉煤灰基地质聚合物/水泥复合材料的力学性能[J].武汉理工大学学报, 2015, 37(7): 9-12.

[11]GAO K, LIN K L, WANG D Y.Effects SiO2/Na2O molar ratio on mechanical properties and themicrost ructure of nano-SiO2 metakaolin-based geopolymers[J].Construction and Building Materials, 2014(53): 503-510.

[12]LYU S J, WANG T T.Main factors affecting mechanical characteristics of geopolymer revealed by experimental design and associated statistical analysis[J].Construction and Building Materials, 2013(43): 589-597.

[13]袁晓宁,杨萍,蔡溪南,等.碱激发碳酸盐复合胶凝材料性能研究[J].化工新型材料,2014,42(3):157-162.

[14]陈忠清, 陈文清, 吴早生, 等.炉渣-粉煤灰基地质聚合物的制备及性能研究[J].非金属矿, 2022, 45(1): 98-106.

[15]中国建筑材料研究院研究所.用于水泥和混凝土中的粉煤灰[M].上海: 中国标准出版社, 2017.

[16]黄华, 郭梦雪, 张伟, 等.粉煤灰-矿渣基地聚物混凝土力学性能与微观结构[J].哈尔滨工业大学学报, 2022, 54(3): 74-84.

[17]高云, 杜春苗, 李栋, 等.水胶比对高强混凝土力学性能影响的实验研究[J].西安建筑科技大学学报(自然科学版), 2020, 52(5): 653-659.

[18]中华人民共和国建设部.普通混凝土力学性能试验方法标准[M].北京: 中国建筑工业出版社, 2016.

[19]SHI C, ROY D, KRIVENKO P.Alkali-activated cements and concretes[M].London: Spon Press, 2006.

[20]GOKHAN G, GOKHAN K.The influence of the NaOH solution on the properties of the fly ash-based geopolymer mor-tarcured at different temperatures[J].Composites Part B: Engineering, 2014, 58: 371-377.

[21]汪华方, 樊自田.水玻璃模数快速测定方法的改进[J].理化检验(化学分册), 2008(1): 47-49.

[22]孙淑文.水玻璃模数的调节与计算[J].建井技术, 1984(2): 26-29.

[23]CHEN Z, LI J S, ZHAN B J, et al.Compressive strength and microstructural properties of dry-mixed geopolymer pastes synthesized from GGBS and sewage sludge ash[J].Construction & Building Materials, 2018, 182: 597-607.

[24]SINGH S, ASWATH M U, RANGANATH R V.Effect of mechanical activation of red mud on the strength of geopolymer binder[J].Construction and Building Materials, 2018, 177: 91-101.

[25]梁丹, 代楠, 魏俊奇, 等.矿渣/粉煤灰地聚物灌浆料的强度和抗热震性能研究[J].新型建筑材料, 2019, 46(1): 17-21.